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ABSTRACT Recent case reports and epidemiological data suggest that fungal infections 
represent an underappreciated complication among people with severe COVID-19. 
However, the frequency of fungal colonization in patients with COVID-19 and associ
ations with specific immune responses in the airways remain incompletely defined. 
We previously generated a single-cell RNA-sequencing data set characterizing the 
upper respiratory microenvironment during COVID-19 and mapped the relationship 
between disease severity and the local behavior of nasal epithelial cells and infiltrating 
immune cells. Our previous study, in agreement with findings from related human 
cohorts, demonstrated that a profound deficiency in host immunity, particularly in 
type I and type III interferon signaling in the upper respiratory tract, is associated 
with rapid progression to severe disease and worse clinical outcomes. We have now 
performed further analysis of this cohort and identified a subset of participants with 
severe COVID-19 and concurrent detection of Candida species-derived transcripts within 
samples collected from the nasopharynx and trachea. Here, we present the clinical 
characteristics of these individuals. Using matched single-cell transcriptomic profiles 
of these individuals’ respiratory mucosa, we identify epithelial immune signatures 
suggestive of IL17 stimulation and anti-fungal immunity. Further, we observe a 
significant expression of anti-fungal inflammatory cascades in the nasal and tracheal 
epithelium of all participants who went on to develop severe COVID-19, even among 
participants without detectable genetic material from fungal pathogens. Together, 
our data suggest that IL17 stimulation—in part driven by Candida colonization—and 
blunted interferon signaling represent a common feature of severe COVID-19 infection.

IMPORTANCE In this paper, we present an analysis suggesting that symptomatic 
and asymptomatic fungal coinfections can impact patient disease progression during 
COVID-19 hospitalization. By looking into the presence of other pathogens and their 
effect on the host immune response during COVID-19 hospitalizations, we aim to offer 
insight into an underestimated scenario, furthering our current knowledge of deter
minants of severity that could be considered for future diagnostic and intervention 
strategies.

KEYWORDS SARS-CoV-2, COVID-19, human, nasal mucosa, epithelial immunity, 
Candida, fungal infection, IL17, cytokine, interferon, anti-viral, scRNA-seq

I nfection with SARS-CoV-2, the virus that causes COVID-19, can lead to severe viral 
pneumonitis and the development of acute respiratory distress syndrome (1, 2). Severe 

COVID-19 is characterized by peripheral immune dysregulation, and we and others 
have previously demonstrated blunted interferon responses within the nasal mucosa 

June 2024  Volume 12  Issue 6 10.1128/spectrum.03516-23 1

Editor Joshua J. Obar, Geisel School of Medicine at 
Dartmouth, Lebanon, New Hampshire, USA

Address correspondence to 
Alex K. Shalek, shalek@mit.edu, 
Jose Ordovas-Montanes, jose.ordovas-
montanes@childrens.harvard.edu, Bruce H. Horwitz, 
bruce.horwitz@childrens.harvard.edu, or Sarah C. 
Glover, sglover3@tulane.edu.

Carly G. K. Ziegler and Anna H. Owings contributed 
equally to this article. Authorship order was agreed 
by all authors.

Alex K. Shalek, Jose Ordovas-Montanes, Bruce H. 
Horwitz, and Sarah C. Glover contributed equally to 
this article.

A.K.S. reports compensation for consulting and/or 
SAB membership from Merck, Honeycomb 
Biotechnologies, Cellarity, Repertoire Immune 
Medicines, Hovione, Ochre Bio, Third Rock Ventures, 
FL82, Empress Therapeutics, Senda Biosciences, 
IntrECate Biotherapeutics, Relation Therapeutics, and 
Dahlia Biosciences. J.O.-M. reports compensation for 
consulting services with Cellarity, Tessel Biosciences, 
and Radera Biotherapeutics.

See the funding table on p. 13.

Received 3 October 2023
Accepted 15 April 2024
Published 30 April 2024

Copyright © 2024 Ziegler et al. This is an open-access 
article distributed under the terms of the Creative 
Commons Attribution 4.0 International license.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

25
 J

ul
y 

20
24

 b
y 

13
4.

17
4.

45
.8

2.

https://crossmark.crossref.org/dialog/?doi=10.1128/spectrum.03516-23&domain=pdf&date_stamp=2024-04-30
https://doi.org/10.1128/spectrum.03516-23
https://creativecommons.org/licenses/by/4.0/


of patients with severe COVID-19 (3–5). Recent case reports and retrospective cohort 
studies suggest that secondary infection with fungal pathogens may be a significant 
contributor to morbidity and mortality in patients with severe COVID-19 (6–11).

The frequency of fungal colonization of the airways in patients with severe COVID-19 
and its potential impact on local mucosal immunity remain unknown (9, 12–15). 
IL17, released by CD4 T cells and innate lymphocytes, is a key effector cytokine 
that coordinates mucosal anti-fungal immunity among other adaptive and innate 
leukocytes, granulocytes, and mucosal stroma (16–19). Recent work has uncovered 
complex interactions between IL17-driven inflammation, type 1 interferon responses, 
and susceptibility to fungal pathogens; however, the effect of fungal colonization and 
anti-fungal immune responses during cooccurrent SARS-CoV-2 infection has yet to be 
explored (20). Here, using a previously published data set derived from a cohort of 
individuals acutely infected with SARS-CoV-2, we directly assessed cooccurrent fungal 
colonization in the airways of patients with severe COVID-19 and examined pathways 
associated with anti-fungal immunity (3).

RESULTS

We had previously described a cohort of 58 individuals—56 of which are further 
characterized here—including 15 healthy participants, 35 individuals diagnosed with 
acute COVID-19, and 6 intubated patients that were negative for SARS-CoV-2 (3) The two 
excluded individuals from the original cohort had recovered from COVID-19 (“convales
cent COVID-19”) and, therefore, did not represent acute infection. We were assessing 
phenotypes of respiratory epithelia early following infection. Nasopharyngeal (NP) swabs 
obtained from these patients were employed in a cross-sectional study of the nasal 
respiratory cellular composition using single-cell RNA sequencing (scRNA-seq) (Fig. 1A 
and B). Patients in this cohort with COVID-19 were sampled within 9 days of hospital 
admission (median: hospital day 2), which we estimated was within 2 weeks of initial 
respiratory symptoms. Full cohort demographic data and findings relating to the cellular 
composition, behaviors, and response to SARS-CoV-2 infection between disease groups 
can be found in our prior manuscript (3). Eight patients from this cohort had detecta
ble Candida species reads from nasopharyngeal swabs or endotracheal aspirate (ETA) 
samples by meta-transcriptomic analysis. Candida species infection was confirmed in 
three of these patients by fungal culture and/or serum (1,3)-β-D-glucan. We found 
no difference in the frequency of antibiotic treatment nor corticosteroid exposure 
among patients from mild/moderate COVID-19, non-COVID-19 intensive care unit (ICU) 
intubated controls, severe COVID-19 Candida negative, or severe COVID-19 Candida 
positive.

We had previously applied a meta-transcriptomic taxonomic classification analysis to 
each sample to assign both cell-associated and ambient/extracellular sequencing reads 
to a reference database of human and microbial genomes (generated on 5 May 2020 
from the NCBI Reference Sequence Database including archaeal, bacterial, viral, proto
zoan, and fungal genomes) (21, 22). This approach, in addition to direct reference-based 
alignment, enabled us to quantify respiratory abundances of SARS-CoV-2 and connect 
viral abundances to the cellular sources of viral replication, as well as concurrent 
epithelial host responses (Fig. 1B). Here, we describe further analysis of the data gener
ated from these nasopharyngeal samples, as well as additional data generated from 
matched ETAs obtained from four of the individuals in the original cohort with severe 
COVID-19.

Candida species coinfection was limited to severe COVID-19 patients

Using meta-transcriptomic alignment of scRNA-seq data, we identified additional high-
abundance microbial taxa across healthy participants and those with COVID-19 including 
common commensal microbes such as Cutibacterium acnes, Malassezia restricta, and 
Staphylococcus aureus (Fig. S1A; Table S1). After SARS-CoV-2, the second-most abundant 
microbe detected was Candida albicans, which was detected on six NP samples obtained 
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from patients with severe COVID-19 (Fig. 1C through E; Fig. S1A). For a subset of patients 
with PCR-positive SARS-CoV-2 and clinical evidence of COVID-19 (both requirements for 
inclusion into our “COVID-19” group), there are no reads that align with SARS-CoV-2. 
However, SARS-CoV-2 RNA was detected from scRNA-seq libraries in 80% (28/35) of 
participants diagnosed with COVID-19. This proportion is in accordance with larger 
studies that assess the likelihood of a positive Real Time Polymerase Chain Reaction (RT-
PCR) result by nasopharyngeal sampling. In one meta-analysis by Mallett et al., 89% of 
RT-PCR results were positive within 4 days of symptom onset for patients with eventual 

FIG 1 Codetection of host single-cell transcriptome with intracellular and microenvironmental pathogen-derived genomic material. (A) Schematic of biological 

sample processing pipeline. (B) Schematic of computational pipeline for each sample. (C) Abundance of human, SARS-CoV-2, and Candida spp. by participant 

and disease group as defined by meta-transcriptomic classification. N = 56 participants. Lines represent median ±interquartile range. (D) Summary of results 

from sequencing, fungal culture, and serum (1,3)-β-D-glucan assays from eight participants with detectable Candida species reads by nasopharyngeal swab or 

endotracheal aspirate. (E) Graphical summary of COVID-19 and Candida sp. infection among severe COVID-19 cohort.
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confirmed COVID-19, and 81% of RT-PCR tests remained positive within the first 4 days of 
hospital admission (23). Further, we have assessed for concordance between Kraken2-
based meta-transcriptomic capture as well as direct alignment against a SARS-CoV-2 
reference sequence (Fig. S1C).

We also identified high levels of Candida glabrata in NP samples from two patients 
with severe COVID-19 and Candida dubliniensis in four samples. All samples that were 
positive for C. glabrata or C. dubliniensis were also positive for C. albicans with the 
exception of the NP sample obtained from COVID-19 participant 12 (Fig. 1D and 
E). Candida albicans was also detected in three of four ETA samples obtained from 
patients with severe COVID-19. For one patient (COVID-19 participant 32), C. albicans 
was detected via ETA but was not detected on their matched NP swab. All three ETA 
samples that were positive for C. albicans were also positive for C. dubliniensis, and one 
of these was also positive for C. glabrata (Fig. 1C through E; Fig. S1A and B). Notably, no 
Candida spp. or other fungal pathogens were detected within samples obtained from 
healthy individuals, those obtained from individuals with mild/moderate COVID-19, or 
those obtained from SARS-CoV-2 negative intubated patients in the intensive care unit 
with severe respiratory failure due to alternative causes. Thus, all Candida spp. reads 
were detected among patients who developed severe COVID-19 requiring intubation 
and mechanical ventilation (WHO severity score of 6–8). Nearly all NP or ETA samples 
that were positive for Candida spp. were collected within 1 week of hospital admission 
(Fig. S2A). The majority (6/8) had been intubated for at least 1 day, and 5/8 had received 
at least 1 day of corticosteroid treatment prior to sample collection (Fig. S2A). Clinical 
evaluations during hospitalization were performed to search for possible fungal infection 
for three of the eight patients with high abundances of Candida spp. by meta-transcrip
tomic classification. COVID-19 participant 12, who had a high abundance of Candida 
glabrata RNA sampled by NP swab on hospital day 2, was intubated on hospital day 1 
(Fig. S2A), and ETA fungal cultures sampled on hospital day 2 revealed growth of Candida 
glabrata (Fig. 1D). For two participants, detection of Candida spp.-derived RNA via 
NP/ETA sampling significantly preceded clinical diagnostic testing for fungal pathogens. 
COVID-19 participant 38, whose NP swab revealed both Candida albicans and Candida 
dubliniensis RNA on hospital day 8, tested positive for serum (1,3)-β-D-glucan on hospital 
day 14 and had Candida albicans growth from ETA culture on hospital day 16 (Fig. S2A). 
Both the NP and ETA samples from COVID-19 participant 18 obtained on hospital day 
6 contained high abundances of reads classified as C. albicans, and C. dubliniensis was 
detected in the ETA sample. On hospital day 12, (1,3)-β-D-glucan was detected in this 
individual’s serum (Fig. S2A), prompting treatment with micafungin (an echinocandin 
anti-fungal) (24). Four out of 21 patients with severe COVID-19 had Candida reads on 
our meta-transcriptomic analysis, but only two of those were positive by serum (1,3)-β-
D-glucan testing. Together, this demonstrates that for a subset of patients, there was 
significant clinical concern during their hospitalization to prompt additional testing to 
evaluate for fungal respiratory infection or fungemia.

Among those individuals, we find concordance between the detection of Candida-
derived RNA from scRNA-seq libraries and clinical assays during their hospitalization. 
Additionally, we compared the proportion of patients in each subgroup in our data set 
receiving corticosteroids in advance or at the time of sample collection. Thirty-three 
percent (2/6) of patients in the intubated non-COVID-19 ICU group were receiving 
corticosteroids, and 0% (0/6) had detectable Candida reads by our analysis. Among 
patients with severe COVID-19 and no Candida species detected via meta-transcriptomic 
analyses, 61% (8/13) were receiving corticosteroids. Finally, 75% (6/8) of patients with 
severe COVID-19 and Candida species detected were receiving corticosteroids. Addition
ally, among COVID-19 patients not in the ICU (our mild/moderate COVID-19 group), 
42.9% (6/14) were receiving corticosteroids, and 0% (0/14) had detectable Candida 
reads. We did not identify any significant differences in the proportion of corticosteroid 
treatment across any of these four groups by the chi-squared test. Although limited by 
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sample size, our data do not suggest that corticosteroid treatment represented a major 
confounder in our detection of Candida.

The majority of COVID-19 patients with severe disease included in our analysis 
were treated with antibiotics during their hospitalization. The most common antibi
otic combination used was azithromycin and ceftriaxone. Among patients with severe 
COVID-19 and no Candida detected, 77% (10/13) were treated with antibiotics for at 
least 1 day prior to sampling. Among patients with severe COVID-19 and Candida species 
detected, 88% (7/8) were treated with antibiotics for at least 1 day in advance of nasal 
swab.

We did not detect a difference in demographics or clinical characteristics—apart 
from the severity of COVID-19—between patients whose samples did or did not contain 
Candida-specific reads (Table 1; Fig. S2B through G). Twenty-eight-day mortality rates 
among individuals with severe COVID-19 were similar between Candida spp. positive vs 
negative groups: 62.5% (5/8) among participants with Candida spp. detected, compared 
to 84.6% (11/13) among participants without Candida spp. detected. Nearly all (7/8) 
participants with COVID-19 whose samples contained Candida spp.-aligning RNA were 
previously diagnosed with type 2 diabetes mellitus (T2DM), and 8/8 were diagnosed with 
chronic hypertension. Notably, although T2DM represents an independent risk factor for 
mucosal Candida colonization, we did not find Candida or other fungal species among 
individuals with T2DM within the healthy non-COVID-19 intubated or COVID-19 mild/
moderate groups (25). Additionally, for individuals with recently measured HbA1c, we did 

TABLE 1 Demographics and medical comorbidities of patients with severe COVID-19a

COVID-19 severe (WHO score 6–8)

Candida spp. negative

COVID-19 severe (WHO score 6–8)

Candida spp. positive

Case number 23.2% (13/56) 14.3% (8/56)

Age (years)

  Minimum 28 38

  Median (IQR) 63 (49) 57 (54.3)

  Maximum 79 84

Sex

  Female 38.5% (5/13) 62.5% (5/8)

  Male 61.5% (8/13) 37.5% (3/8)

Ethnicity

  Hispanic 7.7% (1/13) 0% (0/13)

  Not Hispanic 92.3% (12/13) 100% (13/13)

Race

  Black/African American 53.8% (7/13) 75% (6/8)

  White 23.1% (3/13) 25% (2/8)

  American Indian 23.1% (3/13) 0% (0/8)

BMI

  Median (IQR) 29.9 (27.8) 37.0 (33.6)

Pre-existing conditions

  Diabetes 61.5% (8/13) 87.5% (7/8)

  Chronic kidney disease 15.4% (2/13) 25% (2/8)

  Congestive heart failure 7.7% (1/13) 0% (0/8)

  Lung disorder 30.1% (4/13) 50% (4/8)

  Hypertensionb 69.2% (9/13) 100% (8/8)

  IBD 0% (0/13) 0% (0/8)

Treatment

  Corticosteroids 61.5% (8/13) 75% (6/8)

  Remdesivir 7.7% (1/13) 0% (0/8)

  28-day mortalityc 84.6% (11/13) 62.5% (5/8)
aIQR, interquartile range; BMI, body mass index; IBD, inflammatory bowel disease.
b*p = 0.023.
c***p < 0.0001.
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not identify significant differences in the degree of glycemic control between individuals 
with different COVID-19 severity or by detection of Candida-specific reads (Fig. S2G) (26).

In summary, we identified 0% (0/14) of patients with mild/moderate COVID-19 with 
Candida reads despite equivalent library quality characteristics. This contrasts with the 
38% (8/21) of patients with severe COVID-19 with associated Candida-mapping reads, 
corresponding to P = 0.0118 by the Fisher exact test. Additionally, we found Candida 
reads in 0% (0/6) of patients who were intubated in the intensive care unit. Critically, 
this analysis is based on a limited sample size and merits further investigation with 
adequately powered cohorts.

The nasal epithelium of patients with severe COVID-19 presented increased 
expression of IL17A-induced genes

Previous findings have reported reductions in type I interferon (27–31) and an increase in 
IL17 signaling (32–35) in severe COVID-19 patients. To address the impact in the mucosal 
environment upon exposure to these cytokines, we directly scored epithelial cells for 
expression of gene signatures indicative of IL17A, IFNα, or IFNγ (Fig. 2A through C). 
Individuals who developed severe COVID-19 expressed consistently higher abundances 
of IL17A-induced genes compared to healthy participants or those with mild/moder
ate COVID-19 (Fig. 2A). Interestingly, we did not detect higher abundances of genes 
in the IL17A gene module among participants with severe COVID-19 and detectable 
Candida spp. compared to participants with severe COVID-19 without detectable fungal 
pathogens. Likewise, we did not detect significant differences in levels of interferon-
induced signatures between individuals with and without Candida spp. detected (Fig. 
2B and C). On an individual level, participants whose nasal epithelial cells expressed 
higher abundances of IFNα-induced genes did not express IL17A-induced genes, and 
vice versa (Fig. 2D). Together, this suggests that factors beyond Candida spp. colonization 
may be responsible for the induction of IL17A-stimulated genes in the nasal epithelium. 
However, this underscores that an IL17A-induced epithelial cell state represents a shared 
feature of individuals who develop severe COVID-19 and is correlated with the absence 
of robust interferon-induced anti-viral responses.

As expected, the majority of IL17 sources are derived from T cells (Fig. S4A). To further 
evaluate the relationship between severe COVID-19 and response to IL17 stimulation, 
we have analyzed our data for the expression of IL17 receptor on epithelial cells. The 
expression of IL17RA and IL17RC (which form the heterodimer receptor complex for 
IL17A) was indeed expressed among nasopharyngeal epithelial cells (Fig. 2E). Ciliated 
cells, goblet cells, secretory cells, and, to a lesser extent, basal cells were the major 
epithelial cell types expressing IL17RA and IL17RC.

In vitro exposure to IL17 in nasal epithelial cells enhances pro-inflammatory 
responses

Given that Candida spp. colonization became a clinically relevant infection among 
some individuals who developed severe COVID-19, we wondered whether the nasal 
mucosa of these individuals exhibits evidence for reactive or aberrant IL17 responses. 
To better define the response of the human nasal epithelium to IL17, we reanalyzed 
a subset of 15 healthy and 8 severe COVID-19 donors from our previously published 
population RNA-seq data that reflect gene expression in human nasal epithelial cells 
following in vitro exposure to a range of doses of IL17A (Fig. 3A and B) (36, 37). Across 
multiple human donors, IL17A exposure led to the upregulation of genes involved in 
keratinization (SPRR2E, SPRR2F, and SPRR2G); chemoattractant cytokines for lymphocytes, 
monocytes, and neutrophils (CCL20, CXCL1, CXCL2, and CXCL3); and pro-inflammatory 
factors such as S100A7 and S100A8 (Fig. 3A and B) (38–40). IL17A additionally resulted 
in the dose-dependent induction of serum amyloid A genes SAA1 and SAA2 from nasal 
epithelial cells, which has previously been linked to pathogenic Th17 responses at barrier 
tissues (41). Using RNA-seq data, we generated consensus gene sets for each tested 
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cytokine that were robust across distinct donors, thereby giving us cell type-specific 
gene expression modules for IL17A, IFNα, IFNγ, IL1β, and IL4 (Fig. S3A; Table S2).

FIG 2 Average module scores in different disease groups in all epithelial cells. (A–D) Average gene module scores calculated for each participant, separated by 

disease group. Module score expression was computed over all epithelial cells. Input module genes derived from in vitro stimulation with each labeled cytokine: 

IL17A (A), IFNα (B), and IFNγ (C). Statistical testing by Kruskal–Wallis test with Dunn’s post hoc testing. ***P < 0.001, **P < 0.01, and *P < 0.05. Lines represent 

the mean ± SEM. (E) Top: expression of IL17RA by cell type. Bottom: expression of IL17RC by cell type. Data accessed from https://singlecell.broadinstitute.org/sin

gle_cell/study/SCP1289.
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Next, we returned to the scRNA-seq data from our human COVID-19 cohort and 
evaluated epithelial cells for transcriptomic signatures consistent with exposure to each 
cytokine. Compared to epithelial cells isolated from 15 healthy controls, epithelial cells 
isolated from eight individuals with severe COVID-19 expressed significantly higher levels 
of genes that were also induced by IL17A exposure in vitro (Fig. 4). In particular, IL17A-
induced genes SAA1, SAA2, SAT1, LCN2, S100A8, and GLUL were repeatedly significantly 
upregulated among diverse epithelial cell subsets in severe COVID-19 (Fig. 4A through C) 
but were not found to be significantly induced within the nasal epithelia of patients with 
milder COVID-19 (Fig. S3B). We confirmed that treatment of nasal epithelial cells with 
other inflammatory signals potentially found within the respiratory epithelium, including 
IL4 and IL1β, does not appreciably induce these factors, suggesting that the induction of 
this gene module is a specific downstream effect of IL17 sensing (Fig. S3A).

DISCUSSION

Our data demonstrate Candida spp. colonization of the upper respiratory tract in a 
significant proportion (38%) of individuals hospitalized with severe COVID-19 in a cohort 
from the University of Mississippi Medical Center sampled during the summer 2020 
COVID-19 peak. Notably, no fungal pathogens were identified among individuals with 
mild or moderate COVID-19, non-COVID-19 ICU patients, or healthy controls. Fungal 
reads were detected by NP swabs at early timepoints following hospital admission and 
within the acute phase of patients’ COVID-19 disease trajectory, suggesting that in some 
patients, fungal colonization and infection likely occurred prior to hospital admission and 
in advance of nosocomial exposures. Testing for fungal infection among patients with 

FIG 3 Respiratory epithelial transcriptional signatures following in vitro IL17A stimulation and in vivo fungal colonization in a severe COVID-19 cohort. 

(A) Heatmap of population RNA-seq data comparing untreated nasal epithelial cells to those treated with increasing concentrations of IL17A as indicated across 

columns. Genes (rows) with significant differential expression between untreated and IL17A-treated conditions False Discovery Rate [(FDR)-corrected P < 0.05)]. 

(B) Expression of select genes following 12-hour stimulation with increasing doses of IL17A. Each gene significantly upregulated following IL17A exposure by 

likelihood ratio test, FDR-adjusted P-value <0.001. Lines represent the mean ± SEM.
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prolonged intubation and clinical concern for infection is a common occurrence in the 
intensive care unit. These details provide clinical context and note interesting examples 
of agreement between the two approaches, but we agree that it does not reflect 
orthogonal validation.

Candida is not typically present in the nares of healthy people, being more readily 
detected in the oropharynx; thus, the identification of Candida from NP swabs of a subset 
of patients with severe COVID-19 would suggest either that severe COVID-19 predisposes 
to ectopic colonization in some hosts or alternatively that our methodology is detect
ing increased fungal abundances derived from the oral mucosa (42). Further direct 
comparisons of colonization in the mouth and nose of patients with severe COVID-19 will 
be necessary to clarify this issue (43).

FIG 4 Transcriptional responses of respiratory epithelial cells following in vitro exposure to various cytokines (A–C). Volcano plots of differentially expressed 

genes between select epithelial cell types from healthy participants vs those with severe COVID-19: developing ciliated cells (A), CCL5high squamous cells (B), and 

early response FOXJ1high ciliated cells (C). Gray points, all genes; black points, genes induced in human nasal epithelial cells following IL17A treatment (as in Fig. 

3A). (D) Heatmap of IL17A-induced genes among developing ciliated cells from NP swabs. Heatmap colors reflect scaled gene expression: red, higher expression; 

blue, lower expression. Left columns (blue bar), developing ciliated cells from n = 15 healthy participants; right (pink bar), developing ciliated cells from n = 8 

participants with severe COVID-19 and Candida spp. detected. Genes (rows) selected represent genes significantly upregulated among cultured human nasal 

epithelia cells following in vitro exposure to IL17A. Statistical significance comparing healthy-derived vs severe COVID-19, Candida spp. positive-derived single 

cells by likelihood ratio test assuming an underlying negative binomial distribution. ***FDR-corrected P < 0.001; **FDR < 0.01; *FDR < 0.05.
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Our analysis additionally unites the use of single-cell transcriptomic technologies 
in human clinical cohorts with emerging computational approaches for meta-genomic 
pathogen classification of human samples, all derived from limited cellular material 
captured on a single NP swab (21, 22). By linking unbiased pathogen detection with 
single-cell nasal epithelial and immune transcriptional profiles, we have identified 
specific host behaviors indicative of response to a fungal pathogen and IL17 signal
ing. For a subset of patients, early detection of Candida spp. in the upper respiratory 
mucosa corresponded to the development of more extensive colonization and clinical 
concern for secondary fungal pneumonia and/or candidemia. Mounting evidence across 
various clinical cohorts, including our prior work, suggests that severe COVID-19 arises 
in individuals with impaired anti-viral immunity (3, 31, 44–50). While there is a paucity of 
evidence to suggest that type I/III interferon signaling directly restricts fungal coloniza
tion, prior in vitro studies indicate that IL17 signaling among airway epithelial cells may 
attenuate cellular responses to type I/III interferon (20, 51–54). Additionally, enhanced 
virally induced epithelial injury resulting from impaired IFN signaling could facilitate 
Candida colonization (29, 55). Surprisingly, we observe that IL17A-induced gene sets are 
elevated among epithelial cells from all individuals with severe COVID-19 in our cohort, 
even those patients without genomic or clinical evidence for coincident fungal infection.

Crucially, our data do not allow us to determine whether our observation of elevated 
IL17 responses in patients with severe COVID-19 without overt evidence for fungal 
colonization (i) is the result of colonization below levels of detection in these assays 
or (ii) suggests that IL17 elevation represents a general phenotype of epithelial cells of 
patients with severe COVID-19, independent of fungal colonization. Future experiments 
encompassing longitudinal sampling of patients with COVID-19 could shed additional 
light on whether variability in the dynamics of IL17 and interferon signaling may underlie 
Candida colonization in the upper airways.

Together, our data suggest that upper respiratory Candida colonization and infection 
represent an underappreciated phenomenon among patients with severe COVID-19. 
We acknowledge the limited sample number as a limitation to this study, and further 
research with larger cohorts is warranted to understand the frequency and timing 
of cooccurring infection with Candida spp. and other fungal pathogens following 
SARS-CoV-2 infection. Our data suggest that dedicated, multi-institutional studies are 
required to disentangle how clinical and subclinical fungal infections impact patient 
outcomes during hospitalization for COVID-19 and may hold key insights into determi
nants of severe respiratory failure for these patients and new strategies for diagnostic or 
therapeutic intervention.

MATERIALS AND METHODS

Participant recruitment and respiratory sampling

Full participant characteristics are provided in a previously published study (3). 
The UMMC Institutional Review Board approved the study under IRB#2020-0065. 
All participants or their legally authorized representatives provided written informed 
consent. Briefly, participants were eligible for inclusion in the COVID-19 group if they 
were at least 18 years old; had a positive nasopharyngeal swab for SARS-CoV-2 by PCR; 
had COVID-19-related symptoms including fever, chills, cough, shortness of breath, and 
sore throat; and weighed more than 110 lb. Participants were eligible for inclusion in the 
healthy group if they were at least 18 years old, had a current negative SARS-CoV-2 test 
(PCR or rapid antigen test), and weighed more than 110 lb. COVID-19 participants were 
classified according to the eight-level ordinal scale proposed by the WHO representing 
their peak clinical severity and level of respiratory support required. Nasopharyngeal 
samples and endotracheal aspirate samples were collected by a trained healthcare 
provider; all processing and handling were carried out as previously described (3, 36).
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scRNA-seq data generation and alignment

Annotated scRNA-seq data were recovered from the Single Cell Portal (see Data 
Availability), and single-cell annotations were used as described in reference (3). Briefly, 
data represent aligned scRNA-seq libraries generated using Seq-Well S3; libraries were 
generated using Illumina Nextera XT Library Prep Kits and sequenced on NextSeq 
500/550 High Output 75 cycle v2.5 kits to an average depth of 180 million aligned reads 
per array: read 1: 21 (cell barcode, UMI), read 2: 50 (digital gene expression), and index 1: 
8 (N700 barcode) (56). Libraries were aligned using STAR within the Drop-Seq Com
putational Protocol (https://github.com/broadinstitute/Drop-seq) and implemented on 
Cumulus (https://cumulus.readthedocs.io/en/latest/drop_seq.html, snapshot 9, default 
parameters) (57, 58). As previously described, data were aligned using a custom 
reference, which combined human GRCh38 (from CellRanger version 3.0.0, Ensembl 93) 
and SARS-CoV-2 RNA genomes (3, 59).

Meta-transcriptomic pathogen classification

To identify codetected microbial taxa present in the cell-associated or ambient RNA 
of nasopharyngeal swabs, we used the Kraken2 software implemented using the 
Broad Institute viral-ngs pipelines on Terra (https://github.com/broadinstitute/viral-pipe
lines/tree/master) (21, 22). A previously published reference database included human, 
archaea, bacteria, plasmid, viral, fungi, and protozoa species and was constructed 
on 5 May 2020, therefore including sequences belonging to the novel SARS-CoV-2 
virus. Inputs to Kraken2 were the following: kraken2_db_tgz = “gs://pathogen-pub
lic-dbs/v1/kraken2-broad-20200505.tar.zst,” krona_taxonomy_db_kraken2_tgz = “gs://
pathogen-public-dbs/v1/krona.taxonomy-20200505.tab.zst,” ncbi_taxdump_tgz = “gs://
pathogen-public-dbs/v1/taxdump-20200505.tar.gz,” trim_clip_db = “gs://pathogen-pub
lic-dbs/v0/contaminants.clip_db.fasta,” and spikein_db = “gs://pathogen-public-dbs/v0/
ERCC_96_nopolyA.fasta.” Results were collected using the merge_metagenomics 
tool (https://viral-pipelines.readthedocs.io/en/latest/merge_metagenomics.html), and 
analysis and visualization of each sample’s metagenomic alignments were implemented 
in Prism (v6) or R [v4.0.2; packages ggplot2 (v3.3.2), Seurat (v3.2.2), and ComplexHeat
map (v2.7.3)]. All classification data are included in Table S1.

Human nasal epithelial cell response to in vitro cytokine exposure

Gene lists representing human nasal epithelial cell responses to various exogenous 
cytokines in vitro are derived from previously published population RNA-seq data (36, 
37). Briefly, human nasal epithelial basal cells from two donors were stimulated in vitro 
with 0.1–10 ng/mL IFNα, IL17A, IFNγ, IL1β, or IL4 for 12 hours. Following stimulation, 
cells were lysed, and bulk RNA-seq libraries were generated using the SMART-Seq2 
protocol (60). We identified epithelial gene sets induced by each cytokine independently 
by testing for differentially expressed genes compared to matched, untreated nasal 
epithelial samples (n = 10). Differential expression testing was carried out using a 
likelihood ratio test assuming a negative binomial distribution, implemented with the 
Seurat (v3.1.5) FindAllMarkers function (test.use = “negbinom”). We considered genes as 
differentially expressed with an FDR-adjusted P-value <0.05 (61).

To score for cytokine-specific gene expression among COVID-19 or healthy scRNA-seq 
samples, we first subsetted our scRNA-seq data to only epithelial cells using “coarse” cell 
types, as defined by a cell typing procedure carried out in prior publication (3). Coarse 
cell type groups that were included in the analysis include “ciliated cells,” “developing 
ciliated cells,” “secretory cells,” “goblet cells,” “ionocytes,” “deuterosomal cells,” “squamous 
cells,” “basal cells,” “mitotic basal cells,” and “developing secretory and goblet cells.” 
We calculated module scores over all epithelial cells using the Seurat function AddMo
duleScore with default inputs. The average module score for each NP or ETA sample 
was utilized as a representative measure of epithelial behavior for each participant, as 
represented in Fig. 2A through D.
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scRNA-seq analysis of differential expression

To compare gene expression between cells from distinct disease groups (e.g., healthy 
vs severe COVID-19, Candida spp.), we employed a likelihood ratio test assuming a 
negative binomial distribution as described above [using Seurat FindAllMarkers function 
(test.use = “negbinom”)] (61). We considered genes as differentially expressed with an 
FDR-adjusted P-value <0.001 and log fold change >0.25. Results from select “detailed” 
cell types, as defined and previously reported by Ziegler et al., are represented in Fig. 4A 
through C (3). Full results of differential expression as represented in Fig. 4A through C 
can be found in supplementary tables.

Statistical testing

All statistical tests were implemented in R (v4.0.2) or Prism (v6) software. Specific 
statistical tests, P-values, n, and all summary statistics are provided in Results, figure 
legends, and/or figure panels.
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