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Single-cell profiling of environmental enteropathy 
reveals signatures of epithelial remodeling and  
immune activation
Conner Kummerlowe1,2,3,4, Simutanyi Mwakamui5, Travis K. Hughes2,3,4, Nolawit Mulugeta2,3,4, 
Victor Mudenda5, Ellen Besa5, Kanekwa Zyambo5, Jessica E. S. Shay2,6, Ira Fleming2,3,4, 
Marko Vukovic2,3,4, Ben A. Doran2,3,4,7, Toby P. Aicher2,3,4, Marc H. Wadsworth II2,3,4,  
Juliet Tongue Bramante3,7,8, Amiko M. Uchida9,10,11, Rabiah Fardoos12, Osaretin E. Asowata10,12,13, 
Nicholas Herbert12, Ömer H. Yilmaz2,7, Henrik N. Kløverpris12,14,15,16, John J. Garber7,11, 
José Ordovas-Montañes3,4,9,17,18, Zev J. Gartner19,20, Thomas Wallach21*†,  
Alex K. Shalek1,2,3,4,11,17*†, Paul Kelly5,22*†

Environmental enteropathy (EE) is a subclinical condition of the small intestine that is highly prevalent in low- and 
middle-income countries. It is thought to be a key contributing factor to childhood malnutrition, growth stunting, 
and diminished oral vaccine responses. Although EE has been shown to be the by-product of a recurrent enteric 
infection, its full pathophysiology remains unclear. Here, we mapped the cellular and molecular correlates of EE 
by performing high-throughput, single-cell RNA-sequencing on 33 small intestinal biopsies from 11 adults with EE 
in Lusaka, Zambia (eight HIV-negative and three HIV-positive), six adults without EE in Boston, United States, and 
two adults in Durban, South Africa, which we complemented with published data from three additional individuals 
from the same clinical site. We analyzed previously defined bulk-transcriptomic signatures of reduced villus height 
and decreased microbial translocation in EE and showed that these signatures may be driven by an increased 
abundance of surface mucosal cells—a gastric-like subset previously implicated in epithelial repair in the gastrointes-
tinal tract. In addition, we determined cell subsets whose fractional abundances associate with EE severity, small 
intestinal region, and HIV infection. Furthermore, by comparing duodenal EE samples with those from three con-
trol cohorts, we identified dysregulated WNT and MAPK signaling in the EE epithelium and increased proinflamma-
tory cytokine gene expression in a T cell subset highly expressing a transcriptional signature of tissue-resident memory 
cells in the EE cohort. Together, our work elucidates epithelial and immune correlates of EE and nominates cellular 
and molecular targets for intervention.

INTRODUCTION
Environmental enteropathy (EE) is a subclinical condition of the small 
intestine that is driven by an exposure to environmental entero-
pathogens (1). Also referred to as environmental enteric dysfunction, 
EE affects millions of children and adults around the world and is 
associated with stunted growth, neurocognitive impairment, reduced 
oral vaccine efficacy, and increased risk of metabolic syndrome (2–4). 
Water, sanitation, and hygiene interventions for preventing EE have 
proven ineffective, and ongoing work is assessing alternative thera-
peutic interventions (5). However, development of effective treatments 

has been hindered by a limited understanding of the underlying 
pathophysiology of EE.

Pathologically, EE in the proximal small intestine is characterized by 
reduced villus height, greater crypt depth, and increased microbial 
translocation (1, 2, 6). However, in a study of Zambian children with 
EE and nonresponsive growth stunting over time, reduced villus height 
was associated with decreased microbial translocation (7). In agreement, 
a bulk transcriptomic study of Zambian children with enteropathy 
stratified participants by biopsy villus height and by measured microbial 
translocation and found a notable similarity between the genes up-regulated 
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in biopsies with reduced villus height and the genes up-regulated in biop-
sies with reduced microbial translocation. These studies suggest that EE 
is an adaptive response to potentially lethal enteropathogen expo-
sure that results in reduced absorptive capacity and impaired growth.

Histological analyses of intestinal tissue from patients with EE 
have revealed increased abundance of lymphocytes, reduced goblet 
cell numbers, and altered Paneth cell morphology (6). Low plasma 
concentrations of tryptophan in children with growth stunting (8) 
and the amelioration of villus blunting in Zambian adults with EE 
given amino acid supplementation suggest that amino acid deficiency 
plays a role in EE (9). Bulk transcriptomic studies of EE duodenal 
biopsies have revealed increased expression of nicotinamide ade-
nine dinucleotide phosphate oxidases, chemokines, mucins, matrix 
metalloproteases, interferon (IFN)–stimulated genes, and antimicrobial 
genes including lipocalin-2 (LCN2), dual oxidase 2 (DUOX2), and 
dual oxidase maturation factor 2 (DUOXA2) (10, 11). Whereas pre-
vious work has lacked the single-cell resolution required to localize 
these changes to specific epithelial and immune cell subsets, ap-
plication of single-cell RNA-sequencing (scRNA-seq) could help to 
comprehensively resolve the cellular and molecular changes that 
underlie EE pathophysiology (12).

Here, we applied the Seq-Well S3 platform for massively parallel 
scRNA-seq (13) to characterize the expression profile of small intes-
tinal biopsies from 11 adults from a community in Zambia where 
EE is known to be ubiquitous (14). Across these individuals, we 
profiled 27 biopsies spanning three small intestinal regions, patients 
who are HIV-positive and HIV-negative, and a range of EE severity 
scores. In addition, by comparing EE biopsies with those from control 
groups from South Africa and United States, we found that EE was 
associated with transcriptional signatures of up-regulated WNT 
and down-regulated mitogen-activated protein kinase (MAPK) sig-
naling within the epithelium, as well as increased proinflammatory 
cytokine gene expression in a T cell subset highly expressing a tran-
scriptional signature of tissue-resident memory cells. Together, our 
data provide insight into the epithelial and immune correlates of 
EE, suggesting several therapeutic targets for further investigation.

RESULTS
scRNA-seq of the proximal small intestine 
with and without EE
We collected 27 small intestinal biopsies from 11 Zambian volunteers 
with varying degrees of EE severity (eight were HIV-negative and three 
were HIV-positive) (Fig. 1A and table S3). For all 11, we profiled the 
duodenal bulb and distal duodenum; for a subset, we also collected 
jejunal samples (tables S1 and S2). Because of the widespread preva-
lence of EE in Zambia and a lack of existing screening methods to 
identify patients without EE, we could not obtain control biopsies 
from participants without EE in Zambia. Thus, as controls, we pro-
filed samples from five adults recruited from a gastrointestinal unit in 
Durban, South Africa (two of which we profiled and three for which 
data were publicly available) (15, 16), and two cohorts of patients in 
Boston, USA, where EE can safely be assumed not to occur (tables S1 
and S2). We note that EE is often contextualized to health by either 
comparing intermediate EE with severe EE (17) or comparing patients 
with EE to control cohorts in the United States or the United Kingdom 
(6). The validity of these international comparisons is supported by 
the environmental nature of EE and the resolution of EE in Peace 
Corps volunteers upon repatriation to the United States (18).

In total, we analyzed 26,556 high-quality single-cell transcrip-
tomes across 38 samples from the Zambian, U.S., and South African 
cohorts (Fig. 1B). After data preprocessing, uniform manifold 
approximation and projection (UMAP) visualization of the entire 
dataset revealed differences in cellular distribution by patient cohort, 
intestinal region, and HIV status (Fig. 1C). To identify cellular sub-
sets, we applied an existing pipeline for iterative clustering of cell 
subsets to the Zambian and U.S. datasets (19). Next, we integrated 
these data with the South African data to account for potential batch 
effects (20). These analyses revealed that the expected major cell 
types were represented in almost all biopsies and that epithelial cells 
were the most abundant major cell type (Fig. 1D). Along with more 
standard quality control (QC) metrics (figs. S1 to S4), this indicated 
consistent sample quality. In total, we identified 48 detailed cellular 
subsets that varied in abundance across samples (Fig. 1E, figs. S1 to 
S4, and table S4) (12, 21, 22).

Surface mucosal cells expressing DUOX2 in the EE epithelium
When identifying cell subsets, we noticed a similarity between the 
marker genes of surface mucosal cells (a cell subset most commonly 
found in the distal stomach) and existing gene signatures of reduced 
villus height and decreased plasma lipopolysaccharide (LPS) con-
centrations in EE (fig. S5A) (17, 23). Relative to all other cell sub-
sets, surface mucosal cells were significantly enriched for both gene 
signatures (P < 10−15, Wilcoxon test) (Fig. 2, A and B, and fig. S5, B 
and C). In addition, the genes in these signatures overlapped with 
surface mucosal cell marker genes and three antimicrobial genes 
(DUOX2, DUOXA2, and LCN2) recently identified as histological 
markers of EE (Fig. 2, C and D) (11, 23). Thus, our data suggest that 
these bulk gene signatures may have been driven by an increase in 
surface mucosal cell abundance. In our data, the vast majority of 
surface mucosal cells came from duodenal bulb samples of patients 
with EE (fig. S2C). In these tissues, surface mucosal cell fractional 
abundances were significantly correlated (P < 0.05, permutation test) 
with those of the stem cycling subset and the Ent ANXA2 PTMA 
subset, which highly expressed marker genes of dedifferentiating entero-
cytes (PTMA) (24) and wound-associated epithelial cells (ANXA2) 
(Fig. 2E) (25). To further examine potential relationships between 
these cell subsets that cooccurred with surface mucosal cells, we in-
ferred differentiation trajectories for the epithelial cells in our data-
set by generating a partition-based graph abstraction (PAGA) map 
of the connectivity between epithelial cell subsets (Fig. 2F) (26). The 
wound healing–like epithelial subsets and surface mucosal cells all 
lay in between mature enterocyte and stem cell subsets in the inferred 
differentiation hierarchy. Running the RNA velocity package Velocyto 
produced similar results (fig. S5, D and E) (27). In addition, an immuno-
histochemical staining revealed that DUOX2 localized to the villus 
tip in a blunted villi (Fig. 2G and fig. S6). Together, these results suggest 
that surface mucosal cells occur at the villus tip in EE and are associated 
with the presence of intermediate wound healing–like cell popula-
tions. Furthermore, we observed that surface mucosal cells uniquely 
expressed MUC5AC, a marker of Helicobacter pylori infection (fig. S5A 
and table S4) (28). Applying the metagenomic classification tool 
Kraken2, we found that, relative to the control cohort samples, six 
samples from four participants in the EE cohort contained signifi-
cantly higher counts of H. pylori mapping reads (adjusted P < 0.05, 
Student’s t test; fig. S5). These samples were predominantly from 
the duodenal bulb (fig. S5G). Thus, the presence of surface mucosal 
cells in EE may be associated with H. pylori infection.
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Cellular correlates of intestinal region, disease severity, 
and HIV infection in EE
We next identified cell subsets whose fractional abundance shifted 
across intestinal region within HIV-negative patients with EE (Fig. 3A). 
Duodenal bulb samples were enriched for surface mucosal cells, mu-
cosal neck cells, and enterocytes highly expressing ANXA2, FABP1, 
and CD55, as well as three T cell subsets expressing markers of im-
mune activation (IL17A, CXCR4, and GZMA) (29, 30). Distal duo-
denal samples were enriched for enterocytes, goblet cells, and stem 
cells highly expressing OLFM4.

We then mapped the correlates of histologically determined EE 
severity in 11 biopsies (Fig. 3, B and C, Supplementary Materials 

and Methods, and table S5) (6). In the epithelium, greater severity 
was associated with lower fractional abundances of the mature 
enterocyte and stem OLFM4 subsets, as well as higher fractional 
abundances of immature enterocytes. In the immune compartment, 
greater severity associated with a higher abundance of two T cell 
subsets expressing markers associated with inflammation in the in-
testine (GZMA and CD6) (29) and one T cell subset with high 
expression of MALAT1 and the lowest median number of unique 
molecular identifiers (UMIs) of all T cell subsets, which together 
suggest that this subset may represent low-quality preapoptotic cells 
(fig. S2D) (31). In line with past findings, plasma cell abundances 
decreased with EE severity (32). These results suggest that severe EE 
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Fig. 1. scRNA-seq of the small intestine with and without EE. (A) H&E imaging of the small intestine with intermediate and severe EE. Intestinal villi with normal mor-
phology (left image) and with severe blunting (right image) are highlighted in boxes. (B) Experimental workflow: Small intestinal biopsies from the duodenal bulb, distal 
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overlapped with the genes used to generate the module scores in (A). (D) Dot plot of cell subset marker genes that overlapped with the genes used to generate the 
module scores in (B). (E) Hierarchically clustered heatmap of the Pearson correlations between the fractional abundances of epithelial cells within duodenal bulb samples 
from patients with EE. Cell subsets that significantly correlated with surface mucosal cells are highlighted with a black circle (P < 0.05, permutation testing). Cell subsets 
weakly correlated with surface mucosal cells are highlighted with a gray circle (0.05 < P < 0.1, permutation testing). (F) PAGA trajectory visualization of epithelial subsets. 
(G) H&E (purple) and immunohistochemical staining for DUOX2 protein (brown) on an EE biopsy from the duodenal bulb.
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is associated with an intermediate-like epithelial phenotype and in-
flammatory lymphocyte subsets.

Next, we sought to characterize the impact of antiretroviral-treated 
HIV infection on EE pathology. We found that HIV-positive samples 
displayed higher EE severity than HIV-negative samples (P = 0.034, 
Wilcoxon test) (fig. S7A). Examining the shifts in cell subset fractional 
abundances with HIV infection, we found known features of HIV 

biology including decreased fractional abundances of CD4hi T cells 
and increased fractional abundances of  T cells highly expressing the 
HIV co-receptor CXCR4 (fig. S7, B and C) (15). In addition, within 
duodenal bulb samples, HIV pathology associated with increased frac-
tional abundances of enterocytes highly expressing ANXA2, FABP1, 
and CD55, suggesting that HIV pathology may contribute to the presence 
of this wound healing–like subset within the duodenal bulb (fig. S7D).
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Epithelial correlates of EE
We next sought to identify features that distinguished HIV-negative 
EE distal duodenal samples from matched samples from participants 
in South Africa and United States. Although histology was not avail-
able for the South African dataset, hematoxylin and eosin (H&E) 
staining of a duodenal biopsy from a separate patient at the same clinical 
site revealed features of EE, including villus blunting, goblet cell de-
pletion, and Paneth cell depletion, but no signs of inflammation 
(fig. S8A). To investigate whether samples from this site displayed fea-
tures of EE, we performed a pairwise comparison of the fractional 
abundances of all cell subsets among the three geographical loca-
tions in this study (fig. S8, B to D). Relative to the U.S. cohorts, both 
the Zambian and South African cohorts displayed two characteristic 
features of EE: reduced goblet cell and increased plasma cell fractional 
abundances (6). However, plasma cells and T cell subsets express-
ing markers of inflammation (IL17A and GZMA) were increased 
in fractional abundance in the Zambia EE cohort relative to the 
South African cohort (29), suggesting that not all features of EE were 
present in the South African samples. Thus, we took two approach-
es to identifying the distinguishing attributes of confirmed EE in 
the Zambian cohort. First, we compared the Zambian cohort to all 
control cohorts. Then, we compared the Zambian cohort with con-
firmed EE to only the U.S. cohorts in case our previous analysis was 
confounded by potential features of EE in the South African cohort.

Comparing the fractional abundances of epithelial cells from patients 
with confirmed EE with those from all other cohorts, we found an 
enrichment of stem OLFM4 cells, foveolar precursor cells, and en-
terocytes coexpressing APOA4 and ALPI in EE, as well as reduced 
fractional abundance of enteroendocrine (EEC) K cells (Fig. 4A). 
Differential expression analysis between epithelial cells in EE and con-
trol cohorts revealed compartment-wide up-regulation of genes (PIGR 
and CCL25) involved in antibody transport and lymphocyte recruitment, 
among others (Fig. 4, B and C, and table S6) (33, 34). EE epithelial 
cells also highly expressed CTNNB1, a key component of WNT/-catenin 
signaling. In agreement, we inferred pathway activity based on 
pathway-responsive genes (PROGENY) annotated in the PROGE-
Ny database and found increased WNT signaling in all three stem 
cell subsets and decreased MAPK signaling in cycling stem cells and 
stem OLFM4 cells in EE (Fig.  4D) (35). To help corroborate and 
extend these findings, we immunohistochemically stained Zambian 
EE and U.S. control samples for -catenin. We found that -catenin 
was stained at higher intensity in the EE epithelium (fig. S9). In ad-
dition, tuft cells in EE highly expressed ALOX5AP, which is involved 
in inflammation via leukotriene biosynthesis (36), and SERPINA1, 
which encodes ɑ-1 antitrypsin, a biomarker of epithelial damage in 
EE (Fig. 4C) (5). Last, comparison of our data to past intestinal 
scRNA-seq datasets revealed no evidence for “colonification” of 
the small intestine in EE and showed limited overlap between the 
genes up-regulated in EE and ulcerative colitis (fig. S10).

Immune correlates of EE
Next, we compared cell proportions of immune cells between the 
Zambian cohort with confirmed EE and all control cohorts. This 
revealed that EE samples were enriched for CD8hi T cells highly ex-
pressing MALAT1 and  T cells highly expressing GZMA (Fig. 5A). 
Consistent with previous findings, plasma cells were increased in 
EE relative to non-EE cohorts (fig. S10C) (32). Conducting differ-
ential expression analyses, we found that the majority of significant 
gene expression changes in EE immune cells occurred within the 

T cell compartment (adjusted P < 0.05, Wilcoxon test; Fig. 5B and 
fig. S11, A to C). Of all T cell subsets, T CD8 CD69hi cells displayed 
the most differentially expressed genes between EE and controls, in-
cluding up-regulation of effector-like genes (IFNG, CCL5, and IL32) 
in EE and down-regulation of genes (IL7R and CXCR4) promoting 
memory T cell formation after infection (Fig. 5C and table S6) 
(37, 38). Because CD69 is a potential marker for T cell tissue resi-
dency, we scored all T cell subsets on a gene signature of tissue-resident 
memory T cells and found that the T CD8 CD69hi subset scored the 
highest (adjusted P = 4.98 × 10−78, one-sided Wilcoxon test; Fig. 5D) 
(39). Scoring all T CD8 CD69hi cells on T cell activation signatures, 
we found that, relative to controls, cells in this subset from EE scored 
higher for signatures of cytotoxicity and cytokine production (Fig. 5E) 
(40). In agreement, immunohistochemical staining revealed more cells 
positive for granzyme B in EE samples relative to controls (fig. S12). 
Nominating putative ligand-receptor interactions between cellular 
subsets with the NicheNet, algorithm and database for inferring inter-
cellular communication, we found potentially increased IFN sig-
naling in the EE epithelium stemming from IFN production by T cells, 
especially the T CD8 CD69hi cells (fig. S13) (41). Together, our data 
reveal immune correlates of EE that may contribute to pathogenesis 
and reduced oral vaccine efficacy.

Evidence of reduced epithelial proliferation in EE relative 
to the U.S. cohorts
Last, we compared only the Zambian EE and U.S. cohorts. Differential 
expression analysis revealed that EE samples displayed compartment-
wide down-regulation of genes (KLF4, ATF3, FOS, and JUN) involved 
in epithelial proliferation, interleukin-22 (IL-22) signaling, and goblet 
cell development (Fig.  6A) (42–44). Consistently, the EE samples 
displayed lower fractional abundances of goblet cells and type 3 in-
nate lymphoid cells ILC3s (producers of IL-22), as well as higher 
fractional abundances of  T cells (negative regulators of IL-22 pro-
duction in mice fed a low-protein diet) (fig. S8B) (45, 46). Further-
more, gene set enrichment analysis (GSEA) revealed an enrichment 
of the reactome signature for response of Eukaryotic translation ini-
tiation factor 2-alpha kinase 4 (EIFAAK4) and general control non-
derepressible 2 (GCN2) to amino acid deficiency in the epithelial cells 
(Fig. 6B and table S8). In addition, goblet cells from patients with 
confirmed EE up-regulated markers for lower crypt goblet cells, sug-
gesting that EE goblet cells have a more immature phenotype (Fig. 6C) 
(47). Furthermore, EE stem cells scored significantly lower on a gene 
signature of cycling human cells and displayed lower PROGENy 
scores for the proproliferative epidermal growth factor receptor 
(EGFR), MAPK, and phosphatidylinositol 3-kinase (PI3K) pathways 
(adjusted P < 0.05, Wilcoxon test; Fig. 6, D and E, and table S8) (48). 
We also inferred transcription factor activity by scoring cells for genes 
annotated as being downstream of a given transcription factor in the 
DoRothEA database (49). This revealed the reduced activation of 
activating transcription factor 2 (ATF2) and ATF4 broadly across 
the epithelium, consistent with reduced IL-22 signaling (fig. S14A 
and table S9). In summary, our results suggest that, relative to the 
U.S. controls, the EE epithelium is characterized by reduced prolif-
eration, IL-22 signaling, and goblet cell development. However, 
within the EE cohort, EE severity scores correlated with cycling 
scores in stem cells (fig. S1B). This suggested that although pa-
tients with EE as a whole display evidence of decreased epithelial 
proliferation relative to U.S. controls, more severe EE leads to rela-
tively higher epithelial proliferation than less severe EE.
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DISCUSSION
Here, we profiled EE with the Seq-Well S3 platform for scRNA-seq. 
We thereby identified a cell subset, surface mucosal cells, which highly 
expressed DUOX2 and whose gene expression pattern matched ex-
isting bulk gene signatures of reduced villus height and reduced 
plasma LPS concentrations in EE. In addition, our dataset revealed 
variations in cell subset fractional abundance by small intestinal re-
gion, HIV infection, and EE severity, as well as epithelial and im-
mune subsets differing between EE and control samples. Together, 
our work recontextualizes past bulk transcriptomic studies of EE 
and maps the cellular correlates of EE pathology.

The presence of surface mucosal cells highly expressing DUOX2 
in EE may reflect remodeling of the epithelium into an intermediate 
wound healing–like state. Dedifferentiation of mature cells could 
facilitate repair of the epithelial barrier and reduce microbial trans-
location at the expense of reducing surface area and absorptive 
capacity, explaining why reduced nutrient absorption in EE is associated 

with decreased microbial translocation 
(7). This process may be due in part to 
H. pylori: Because H. pylori gastritis has 
been shown often to be associated with 
duodenal colonization in children (50), 
H. pylori infection may explain why 
previous studies have found high expres-
sion of DUOX2 transcripts in the distal 
duodenum of some children with EE, 
whereas our study found DUOX2 ex-
pressing surface mucosal cells in the duo-
denal bulb (which is closest to the stomach 
where most H. pylori infection occurs) 
but not the distal duodenum of adults 
with EE.

Comparison to all control cohorts re-
vealed the epithelial and immune cell 
correlates of EE. Increased abundances 
of immature epithelial cell subsets, in-
creased WNT/-catenin signaling, and 
decreased MAPK signaling suggested that 
the EE epithelium is biased toward an 
immature phenotype. Furthermore, Tuft 
cells up-regulated genes involved in pro-
moting and responding to inflammation 
(51). In addition, we found lower relative 
abundance of T cells expressing a tran-
scriptional signature of tissue-resident 
memory T cells, but those cells had ele-
vated expression of inflammatory cyto-
kines (including IFN) in EE, suggesting 
that although these cells are present in a 
lower abundance in EE, they may be 
chronically activated. This, in turn, may 
lead to immune exhaustion and impaired 
responses to new immune stimuli, which 
may contribute a hindered response to 
oral vaccines (52). Although IFN is often 
viewed as a proinflammatory cytokine 
in acute inflammation, numerous studies 
have demonstrated that in chronic in-
flammation, IFN can produce tolero-
genic effects, which would be consistent 

with reduced oral vaccine efficacy in EE (53).
In addition, we compared EE to only the U.S. cohorts to account 

for potential confounding features of moderate EE in the South 
African cohort. Relative to the U.S. cohorts, the EE epithelium was 
characterized by decreased epithelial proliferation and changes in 
cell subset fractional abundances, consistent with decreased IL-22 
signaling (45, 46, 54). This is in line with previous work showing 
decreased abundances of transcripts from proproliferative pathways 
in the feces of Malawian children with EE (55) and work showing 
that during Cryptosporidium infection, protein malnutrition leads 
to reduced turnover of intestinal epithelial cells (56). Consistently, 
reduced epithelial proliferation in EE relative to the U.S. cohorts was 
associated with GSEA enrichment of a response to amino acid defi-
ciency and reduced goblet cell abundances, whose differentiation can 
be induced by tryptophan (57). This agrees with a previous study 
demonstrating decreased tryptophan metabolism in Pakistani children 
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with EE and with data showing that amino acid supplementation 
ameliorates villus blunting in adults with EE (9, 11). Thus, amino 
acid deficiency may lead to hypoproliferative signaling in the EE 
epithelium characterized by reduced stem cell proliferation and goblet 
cell abundance. One intriguing aspect of this hypoproliferative sig-
naling is that it stands in stark contrast to the hyperproliferative 
signaling observed in Crohn’s disease, which is of particular inter-
est, because limited evidence suggests lower rates of inflammatory 
bowel disease in countries where EE is endemic (15, 49).

However, when comparing within the EE cohort, more severe 
EE was positively associated with stem cell proliferation. This may 
be due to the interplay of malnutrition and infection. The reduced 
dietary quality in the population of Zambian adults we studied may 
impose a proliferative constraint on enteropathy, leading to reduced 
stem cell turnover relative to intestinal homeostasis. However, indi-
viduals with more severe EE may have more proliferation than others 
in response to infective and inflammatory drivers. This discrepancy 
between our within- and across-country analyses is congruent with 
past work, which found similar discrepancies, highlighting the necessity 

of comparing to an out-group to fully understand the pathophysiology 
of EE (32, 58). Follow-up mechanistic studies are needed to clarify 
the role that malnutrition and infection play in epithelial prolifera-
tion in EE.

It is important to recognize that our study has several inherent 
limitations. We were not able to include a non-EE control group of 
age-matched adults in Lusaka, Zambia. Thus, we cannot rule out 
the possibility that the observed differences between patients with 
EE and the U.S. and South African cohorts are due to unobserved 
variables that differed between these patient populations, especially 
the high burden of enteropathogens in tropical settings. In addition, 
our findings are primarily correlative due to the associative nature 
of measuring mRNA expression and the difficulties associated with 
mechanistic follow-up validation in humans. This is further limited 
by the lack of available tissue for histological analysis of samples 
from the South African cohort. Because we saw few stromal cells in 
our scRNA-seq dataset, our tissue dissociation was likely biased 
against this subset, and future work will be needed to characterize 
these cells in EE. In addition, the inflamed small intestinal epithelium 

A C

Log2 fold change

0.0

0.2

0.4

0.6

T CD
8 C
CL
5h

i C
D6

hi

T C
D8
 CD

69
hi

T CD
8 M

AL
AT
1 X
IST
 NK

TR

T cy
cli

ng

T g
am

m
a 

de
lta
 G
ZM
Ah

i

Cell subset

Fr
ac

tio
n 

of
 a

ll T
 a

nd
 N

K
 c

el
ls

EE EoE Resection South Africa

** 

*** 

*** 

*** 

*** 

B

Not
EE

EE

T and NK cell compartment-wide DE

−
Lo

g 10
(a

dj
. P

 v
al

ue
)

Log2 fold change

CD3D
B2M

HLA−DPB1BTG1CXCR4
ZFP36L2
FOS SLAMF7

HLA−B

CD69
IL7R

0

50

100

150

−1 0 1 Not
EE

EE

T CD8 CD69hi DE

−
Lo

g 10
(a

dj
. P

 v
al

ue
)

GZMA

CXCR4
IL7R SLAMF7CCL5

HLA-DRB1ZFP36L2

PFN1

LTB IL32
FOS IFNG

0

20

40

60

−1 0 1

D Tissue-resident memory signature

Median 
score

***

−0.4

0.0

0.4

0.8

T CD
8 C
D6
9h

i

T g
am

m
a 

de
lta

 CX
CR
4h

i

NK G
ZM
Ah

i

T CD
4 C
D6
9h

i
IL

C3

T g
am

m
a 

de
lta

 G
ZM
Ah

i

T CD
8 I
FI4
4 I
FIT
1

T cy
cli

ng

NK NC
AM
1h

i

T CD
8 C
D6
9 G

ZM
H

T CD
8 G

ZM
H G

ZM
K

T CD
4 C
D6
9lo

 IL
17
A

NK G
ZM
Hhi

T CD
8 M

AL
AT
1 X
IST
 NK

TR
T M

T

T CD
8 C
CL
5h

i C
D6

hi

M
od

ul
e 

sc
or

e

E Signatures enriched in EE T CD8 CD69hi cells
relative to control cohorts

CD8 cytotoxic
Adj. P < 4.0 × 10−20

−0.2

0.0

0.2

0.4

EE
EoE

Res
ec

tio
n

Sou
th

 A
fri

ca

M
od

ul
e 

sc
or

e
CD8 cytokine
Adj. P < 6.2 × 10−16

−0.2

−0.1

0.0

0.1

0.2

0.3

EE
EoE

Res
ec

tio
n

Sou
th

 A
fri

ca

Fig. 5. EE is associated with a shift toward activated T cell phenotypes. (A) Cell subsets with significant shifts in relative abundances between EE and all control co-
horts (*adjusted P < 0.05, **adjusted P < 0.01, and ***adjusted P < 0.001, Fisher’s exact test). (B) Genes differentially expressed in the T and NK cell compartment in EE rel-
ative to all control cohorts. Horizontal and vertical lines respectively refer to an adjusted P value threshold of 0.01 and a log fold change threshold of 0.1. (C) Genes 
differentially expressed in EE relative to all control cohorts within specific cellular subsets. Horizontal and vertical lines respectively refer to an adjusted P value threshold 
of 0.01 and a log fold change threshold of 0.1. (D) Module scores for a tissue-resident memory T cell signature in EE relative to all control cohorts. (E) T cell activation sig-
natures enriched in T CD8 CD69hi cells from patients with EE relative to all control cohorts. Proliferation: adjusted P = 3.2 × 10−04, Cohen’s D effect size = 0.32; CD8 cytotoxic: 
adjusted P = 6.2 × 10−25, Cohen’s D effect size = 0.95; CD8 cytokine: adjusted P = 2.3 × 10−23, Cohen’s D effect size = 0.90.

D
ow

nloaded from
 https://w

w
w

.science.org at H
arvard U

niversity on Septem
ber 07, 2022



Kummerlowe et al., Sci. Transl. Med. 14, eabi8633 (2022)     31 August 2022

S C I E N C E  T R A N S L A T I O N A L  M E D I C I N E  |  R E S E A R C H  R E S O U R C E

9 of 13

and lamina propria are highly heterogenous environments contain-
ing several relatively rare cell types such as Paneth cells and a variety 
of immune subsets that we did not have sufficient power to analyze 
in great detail. Furthermore, the HIV status of the participants from 
the U.S. cohorts was not determined. In addition, we did not screen 
patients with EE for Celiac disease and cannot completely rule out 
the possibility that some patients may have had Celiac disease; how-
ever, we note that, in Zambia, the staple diet is maize (a gluten-free 

food) and that past studies of EE in Zambian adults have found no 
evidence of Celiac disease (59). In addition, pediatric EE may differ 
from EE in adults, which calls for future studies in pediatric cohorts. 
Last, because EE is an endemic condition in low- and middle-income 
countries across the globe, it will be necessary to validate our results 
in cohorts with EE from geographic locations other than Zambia.

Examining our work as a whole, a potential picture of EE patho-
genesis emerges. Relative amino acid deficiency due to a low-quality 
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diet may lead to reduced epithelial proliferation and differentiation 
toward goblet cells, which would diminish antimicrobial mucosal defense, 
leading to increased pathogen-mediated damage of the enterocyte. This 
may then lead to epithelial remodeling toward an intermediate wound 
healing–like phenotype associated with the presence of surface mucosal 
cells. In addition, enteropathogen-mediated damage would further ex-
aggerate the pathogen-induced IFN response and may explain the 
observed proinflammatory polarization of CD8 CD69hi T cells in our 
data. Together, these findings nominate several therapeutic axes for 
inducing healthy epithelial proliferation and immune efficacy in EE.

MATERIALS AND METHODS
Study design
Adult volunteers were recruited from a disadvantaged community in 
Lusaka, Zambia, in which we have carried out previous studies of EE 
(7, 10). All volunteers gave a written, fully informed consent. The 
study was approved by the University of Zambia Biomedical Research 
Ethics Committee (reference 006-11-15, dated 12 January 2016). 
From July to August 2018, volunteers underwent endoscopy with a 
Pentax 2990i gastroscope or a Pentax VSB2990i enteroscope in the 
endoscopy unit of the University Teaching Hospital, Lusaka, under 
sedation with diazepam and pethidine. Duodenal tissue was collected 
from patients with eosinophilic esophagitis (EoE) undergoing sur-
veillance gastroscopy at Massachusetts General Hospital (MGH), 
Boston. Informed consent was obtained from patients with EoE under 
a protocol approved by MGH. Resection samples were obtained from 
patients undergoing duodenal resection for pancreatic cancer (but 
in whom no local spread was apparent) in accordance with MGH 
Institutional Review Board guidance under Mass General Brigham 
Protocol 2010P000632. Informed consent was obtained from par-
ticipants recruited into this study at the Inkosi Albert Luthuli Central 
Hospital in Durban, South Africa. No randomization or blinding 
was done in this study. No power analyses were conducted because 
of the observational nature of this study and the lack of preexisting 
scRNA-seq datasets of EE. The number of samples used is presented 
in the figures, supplementary figures, and supplementary tables.

Biopsy handling, immunohistochemical staining, 
and tissue digestion
Biopsies from the patients with EE were collected into normal sa-
line, then orientated under a dissecting microscope, fixed in buffered 
formal saline, and processed to 3-m sections for H&E staining. These 
sections were scanned using an Olympus VS120 scanning micro-
scope, measured for average villus height and crypt depth, and scored 
for EE severity using a recently published methodology (6). Duodenal 
bulb samples from patients with EE were stained for DUOX2 pro-
tein, and distal duodenal samples from patients with EE and from 
normal tissue obtained from Mass General Brigham were stained 
for -catenin and granzyme B protein; for more details, see Supple-
mentary Materials and Methods. Biopsies from patients with EE, EoE, 
and resection and from South African individuals were dissociated 
into single-cell suspensions using a modified version of a previously 
published protocol (21). For further detail, see Supplementary 
Materials and Methods.

scRNA-seq with Seq-Well S3

Please refer to Supplementary Materials and Methods for further 
detail. Briefly, the epithelial and lamina propria layers of the biopsies 

were dissociated into single-cell suspensions. Then, single cells 
were loaded onto a functionalized polydimethylsiloxane array pre-
loaded with uniquely barcoded mRNA capture beads (ChemGenes, 
MACOSKO-2011-10), and sequencing libraries were obtained and 
sequenced on an Illumina NextSeq. Sequencing read alignment and 
demultiplexing was performed on the cumulus platform using 
snapshot 6 of the Drop-seq pipeline (48), resulting in a cell barcode 
by UMI digital gene expression matrix. QC was performed to remove 
low-quality cell barcodes and doublet cells. Bam files from sequencing 
were classified with Kraken2 to find metagenomic mapping reads. 
To identify cell subsets, we adopted an existing pipeline for auto-
mated iterative clustering of single-cell data that has been shown to 
identify batch effects without collapsing distinct rare cell types (19). 
We applied this pipeline to the data from the EE and U.S. cohorts. 
To correct for batch effects between data collected in different labo-
ratories, we integrated our data with the South African dataset (20). 
All subsets were scored on gene signatures of reduced villus height 
and decreased and plasma LPS signatures from Chama et al. (17) 
using the AddModuleScore function in Seurat, and a Wilcoxon test 
was used to assess significance. Epithelial trajectories were inferred 
with PAGA (26). RNA velocity trajectories were inferred with 
Velocyto (27).

Analyses examining variation within samples 
from the EE cohort
To assess the epithelial subsets associated with surface mucosal cells 
in duodenal bulb samples from patients with EE, we calculated the 
Pearson correlation between the fractional abundances of all epithelial 
subsets within these subsets. We then hierarchically clustered the re-
sulting correlations with the ComplexHeatMap R package. Changes 
in the relative abundances of cell subsets by differing HIV infection 
status and small intestinal region were detected by a leave-one-out 
approach to avoid identifying patient-specific effects using a Fisher’s 
exact test. Cell subsets that significantly associated with histological 
EE severity were identified by running Dirichlet regression. Further 
details are provided in Supplementary Materials and Methods.

Comparison of distal duodenal samples from HIV-negative 
EE and control cohorts
Distal duodenal samples from HIV-negative patients with EE were 
compared with matched samples from control cohorts. We sought 
to identify biological features driven by variation in EE biology rel-
ative to the control cohorts (as opposed to identifying biology that 
distinguished only one cohort from EE). Thus, in all subsequent 
analyses, we required that results pass the following two criteria: (i) 
result that is significant when comparing EE versus all control co-
horts and (ii) result that displayed the same direction of change be-
tween EE and each control cohort. Further details are provided in 
Supplementary Materials and Methods.

Statistical analysis
The statistical test used for each comparison is denoted in the corre-
sponding figure legend. Tests were conducted in R, and a Benjamini-
Hochberg adjusted P value of 0.05 was used for significance.

SUPPLEMENTARY MATERIALS
www.science.org/doi/10.1126/scitranslmed.abi8633
Materials and Methods
Figs. S1 to S14
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Single-cell profiling of environmental enteropathy reveals signatures of epithelial
remodeling and immune activation
Conner KummerloweSimutanyi MwakamuiTravis K. HughesNolawit MulugetaVictor MudendaEllen BesaKanekwa
ZyamboJessica E. S. ShayIra FlemingMarko VukovicBen A. DoranToby P. AicherMarc H. Wadsworth IIJuliet Tongue
BramanteAmiko M. UchidaRabiah FardoosOsaretin E. AsowataNicholas HerbertÖmer H. YilmazHenrik N. KløverprisJohn
J. GarberJosé Ordovas-MontañesZev J. GartnerThomas WallachAlex K. ShalekPaul Kelly

Sci. Transl. Med., 14 (660), eabi8633. • DOI: 10.1126/scitranslmed.abi8633

Profiling environmental enteropathy
Single-cell RNA sequencing (scRNA-seq) has been shown to be a powerful tool for understanding the pathophysiology
of numerous disorders. Here, Kummerlowe et al. applied scRNA-seq on small intestine biopsies from patients with
environmental enteropathy (EE), an intestinal subclinical condition prevalent in low-income countries, caused by
exposure to environmental enteropathogens. The authors identified common pathways associated with the disease-
and cell-type contribution to EE severity. Samples from patients with EE showed increased proinflammatory molecules
and alterations in WNT- and MAPK-associated signaling, suggesting that targeting these pathways could be effective
for treating EE.
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