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Genome-wide association studies (GWASs) are a valuable tool for 
understanding the biology of complex human traits and diseases, but 
associated variants rarely point directly to causal genes. In the present 
study, we introduce a new method, polygenic priority score (PoPS), that 
learns trait-relevant gene features, such as cell-type-specific expression, 
to prioritize genes at GWAS loci. Using a large evaluation set of genes with 
fine-mapped coding variants, we show that PoPS and the closest gene 
individually outperform other gene prioritization methods, but observe 
the best overall performance by combining PoPS with orthogonal methods. 
Using this combined approach, we prioritize 10,642 unique gene–trait pairs 
across 113 complex traits and diseases with high precision, finding not only 
well-established gene–trait relationships but nominating new genes at 
unresolved loci, such as LGR4 for estimated glomerular filtration rate and 
CCR7 for deep vein thrombosis. Overall, we demonstrate that PoPS provides 
a powerful addition to the gene prioritization toolbox.

GWASs have identified thousands of genetic loci associated with com-
mon complex traits and diseases1. Nevertheless, for the vast majority 
of significant GWAS loci, the identity of the causal gene(s) underly-
ing the association remains unknown, limiting the biological insight 
gained into common disease mechanisms2,3. There are several major 
challenges to pinpointing the causal gene. First, linkage disequilibrium 
(LD) between variants masks the identity of the causal variant4. Second, 
most associated loci do not contain protein-coding variants. Instead, 
the causal variant acts through gene-regulatory mechanisms3, but 
incomplete maps from regulatory element to gene hinder causal gene 

identification5. Many computational approaches try to resolve these 
challenges6–10, yet methods in the field of gene prioritization often fail 
to nominate causal genes with high confidence.

Gene-prioritization strategies can be placed into two broad cate-
gories: first, locus-based methods that leverage local GWAS data by con-
necting the causal variants to the causal gene(s) using protein-coding 
variants, genomic distance, enhancer–gene maps11–16 or expression 
quantitative trait loci (eQTLs)7,8; and second, similarity-based meth-
ods that search for global patterns in associated genes and nominate 
those with similar functions, pathways or network connections6,10,17. 
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Finally, PoPS computes polygenic priority scores for each gene, 
g, by multiplying its row vector of gene features, Xg, by β̂ββ.

̂yg = Xgβ̂ββ (3)

We refer to ̂yg  as the polygenic priority score (PoP score) for gene 
g. We say PoPS prioritizes a gene if it is in a 1-Mb locus centered on a 
genome-wide significant variant and has the highest PoP score among 
genes in the locus (Methods). In addition, we include an option for a 
user to compute scores in a leave-one-chromosome-out (LOCO) fash-
ion, obtaining estimates β̂ββ−chri for i = 1,… , 22  and scoring, for example, 
a gene on chromosome 1 by using β̂ββ−chr1.

Application of PoPS to 113 complex traits
We applied PoPS to 18 diseases with publicly available GWAS summary 
statistics and 95 complex traits from the UK Biobank21 (Supplementary 
Table 1) using EUR individuals from the 1000 Genomes Project22 as a 
reference panel (Methods). The full set of gene features used in these 
analyses included 57,543 total features: 40,546 derived from gene 
expression data, 8,718 extracted from a PPI network23 and 8,479 based 
on pathway membership24–27 (Supplementary Table 2 and Methods). 
After marginal feature selection, 2,512–26,155 features per trait were 
included in the predictive model (Extended Data Fig. 1d). For each trait, 

Across both categories, existing methods lack consensus and have 
high false-positive rates18. At the same time, related work suggests 
that combining results from different methods can yield better predic-
tions19. Among similarity-based approaches, most methods focus on 
SNPs that meet genome-wide significance, ignoring information from 
sub-significant variants that explain most of the narrow sense herit-
ability17,20. Moreover, recently generated single-cell RNA sequencing 
(scRNA-seq) datasets hold promise for more accurately characterizing 
shared functions among genes and, thus, improving the accuracy of 
similarity-based gene prioritization.

In the present study, we propose a new similarity-based gene prior-
itization method, a gene-level Polygenic Priority Score (PoPS), that lev-
erages the full polygenic signal and incorporates data about genes from 
a variety of sources, including 73 publicly available scRNA-seq datasets. 
PoPS is computationally efficient and requires only summary statistics 
and an LD reference panel. Across 113 complex traits and diseases, we 
show that PoPS outperforms other similarity-based and locus-based 
gene prioritization methods using a unique evaluation gene set. We 
further show that, by combining PoPS with locus-based gene prioriti-
zation methods, we can prioritize genes with higher confidence than 
PoPS or any locus-based method alone, ultimately prioritizing genes 
at 10,642 GWAS loci with high confidence.

Results
Overview of PoPS
Our method, PoPS, is predicated on the assumption that causal genes 
share functional characteristics. Specifically, we assume that genes 
with physical locations on the genome near significantly associated 
SNPs and that share similar biological annotations are most likely to be 
causal. PoPS uses gene-level associations computed from GWAS sum-
mary statistics to learn joint polygenic enrichments of gene features 
derived from cell-type-specific gene expression, biological pathways 
and protein–protein interactions (PPIs). To nominate causal genes, 
PoPS then assigns a priority score to every protein-coding gene accord-
ing to these enrichments (Fig. 1).

First, PoPS applies MAGMA9 to compute gene-level association 
statistics and their correlations using GWAS summary statistics and 
LD information from an ancestry-matched reference panel (Meth-
ods). Gene-level covariates are then projected out of the computed 
gene-level associations from MAGMA to control for variables such 
as gene length and density of SNPs (Methods). Next, PoPS performs 
marginal feature selection by using MAGMA to perform enrichment 
analysis for each gene feature separately. MAGMA tests a gene feature, 
f, for enrichment by modeling the gene-level associations, y, by:

y = Xfβ f + ε, ε ≈ MVN(0,R) (1)

where Xf is a column vector corresponding to gene feature f (for exam-
ple, a binary indicator of membership in a pathway), and the error terms, 
ε, are assumed to follow a multivariate normal (MVN) distribution with 
covariance matrix, R, that accounts for the LD between nearby genes 
computed from a reference panel. The model is fit by generalized least 
squares (GLS) and MAGMA reports both β̂f  and a P value for the hypoth-
esis that βf ≠ 0. We retain features that pass a nominal significance 
threshold (P < 0.05) to reduce the noise and computational complex-
ity of fitting the joint model.

Second, PoPS fits a joint model by replacing the vector Xf in equa-
tion (1) with a matrix X that includes all of the selected features (see 
Extended Data Fig. 1 for comparison of model-fitting choices).

y = Xβββ + ε, ε ≈ MVN(0,R) (2)

We extend the GLS method used by MAGMA to incorporate L2 
regularization to account for a large number of features and improve 
test set prediction, obtaining an estimated β̂ββ.

PoPS

Networks

Pathways

(1) Marginal feature selection
(2) GLS with ridge penalty

Prediction

G
en

es

Features

y = Xβ̂ˆ

β̂

Fe
at

ur
es

RNA-seq

 = X

G
en

es

z-scores

Summary statistics
LD reference panel

 = y

Fig. 1 | Overview of PoPS. We computed gene-level z-scores from GWAS  
summary statistics with an LD reference panel using MAGMA. We created gene 
features from gene expression data, biological pathways and predicted PPI 
networks, and used marginal feature selection to limit features included as those 
most likely to be relevant. We then fitted a linear model for the dependence of 
gene-level associations on gene features using GLS to account for LD and add an 
L2 penalty to account for the large number of features. This results in a vector of 
joint polygenic enrichments of gene features, β̂ββ, which we use to assign gene 
priority scores.
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Fig. 2 | Evaluation of PoPS and comparison to other similarity-based 
methods. a, Results using Benchmarker to evaluate PoPS, grouped by trait 
domain and sorted by the lower bound of the 95% confidence interval (CI) of 
normalized τ. Normalized τ provides an estimate for the average contribution 
of SNPs near genes with high priority scores to per-SNP heritability, normalized 
by average to per-SNP heritability. Error bars represent 95% CIs around the point 
estimate. One-sided P values were computed using the z-score test for heritability 
enrichment in S-LDSC. Opaque bars passed Bonferroni’s significance threshold. 
For inflammatory bowel disease (IBD) and Alzheimer’s disease, we retained 

summary statistics from both the UK Biobank and other publicly available 
sources with a greater sample size. b, Results using closest gene enrichment 
to evaluate PoPS ordered as in a. Error bars represent 95% CIs around the point 
estimate. One-sided P values were computed using a normal approximation to 
the null distribution and opaque bars passed Bonferroni’s significance threshold. 
c, Results using Benchmarker to compare similarity-based gene-prioritization 
methods, meta-analyzed within each trait domain across independent traits 
(n = 46 independent traits). Error bars represent 95% CIs around the meta-
analyzed point estimate.
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we score 18,383 protein-coding genes and prioritize one gene in each 
genome-wide significant locus. In total, PoPS prioritized 17,906 unique 
gene–trait pairs in 25,342 loci across 113 complex traits.

Enrichment-based evaluation of PoPS
To evaluate the performance of PoPS for prioritizing probable causal 
genes, we avoided using curated sets of gold-standard genes that may 
be biased toward well-studied genes or genes in well-characterized 
pathways. We instead evaluated PoPS with two metrics unaffected by 
prior knowledge of trait etiology by taking advantage of the fact that 
PoPS can be run using a LOCO approach, allowing us to use held-out 
locus association data for validation. Both metrics quantify the extent 
to which genes with high PoP scores overlap with sets of variants or 
genes that we expect to be highly enriched for causal signals. First, 
we applied the Benchmarker method17, which evaluates methods by 
estimating the average contribution of SNPs near top-scoring genes 
to per-SNP heritability (τ). A value of normalized τ significantly greater 
than zero indicates that genes with high PoP scores are enriched for 
heritability, even after accounting for the contributions of 53 other 
genomic annotations. After correction for multiple testing, we found 
that our estimates for normalized τ were significantly greater than 
zero for 54 of 113 traits tested (Fig. 2a and Supplementary Table 3). As 
a second evaluation metric, we focused on the performance of PoPS in 
GWAS significant loci. Following previous work demonstrating that the 
causal gene is often the closest gene to the lead variant in the locus19, we 
tested whether PoPS-prioritized genes were the closest gene to the lead 
variant more often than expected by chance (Methods). Although this 
test is underpowered for traits with a small number of significant loci, 
we found that PoPS-prioritized genes were significantly enriched for 
being the closest gene for 64 of 113 traits tested after Bonferroni’s cor-
rection (Fig. 2b and Supplementary Table 3). Thus, both Benchmarker 
and our closest gene metric indicate that PoPS-prioritized genes are 
enriched for being causal.

Comparison to similarity-based methods
After evaluating PoPS on its own, we investigated how PoPS compares 
with existing similarity-based methods: DEPICT6, NetWAS10 and a 
method that we call MAGMA-sim17 (Methods). Using the same set of 
113 traits, we applied: (1) PoPS using the full set of 57,543 features; (2) 
PoPS using only the 14,461 reconstituted gene sets used by DEPICT; (3) 

MAGMA-sim using the 14,461 reconstituted gene sets; (4) DEPICT using 
the 14,461 reconstituted gene sets; (5) NetWAS using a significance cut-
off of P < 0.01; and (6) NetWAS using Bonferroni’s significance cutoff. 
We found that PoPS using the full feature set showed the strongest 
performance compared with other similarity-based methods for 31 of 
46 independent traits using Benchmarker and 33 of 46 traits using the 
closest gene test (Supplementary Table 3). After meta-analyzing esti-
mates within 11 trait domains across 46 traits chosen to have low genetic 
correlation (Methods), we again found that PoPS significantly outper-
formed all other similarity-based methods tested (Fig. 2c and Extended 
Data Fig. 2a). Importantly, when PoPS, DEPICT and MAGMA-sim were 
run using the same features, PoPS significantly outperformed the 
other two methods by both metrics; giving PoPS access to the full set 
of features further increased its performance. Thus, we attribute the 
superior performance of PoPS compared with other similarity-based 
methods to both the large set of gene features and the joint modeling 
used to integrate signal across those gene features.

Interpreting gene features in the PoPS model
We next evaluated the relevance of each category of the features 
included in the PoPS model: gene expression, pathways and PPI 
networks (Fig. 3 and Extended Data Figs. 2 and 3). We created three 
alternative versions of PoPS, training on features from each category 
separately, to produce three new sets of results for each phenotype. 
In a meta-analysis of 46 independent traits, we found that inclusion of 
all features yielded the strongest performance in both Benchmarker 
and closest gene evaluations, followed in order by pathways, gene 
expression and, last, by PPI networks (Fig. 3a, Extended Data Fig. 3b 
and Supplementary Table 3).

To better understand the relevant tissues, cell types and pathways 
learned by PoPS, we investigated which features were most informative 
for prioritized genes. As many highly correlated features were included 
in the joint model for PoPS, the individual coefficients, β̂ββ, lacked direct 
interpretability. We instead grouped related features for a trait by 
performing hierarchical clustering on the selected features (Methods) 
and computed the total contribution of the features in the cluster to 
the PoP scores of prioritized genes. Gene features in the top clusters 
recapitulated known trait biology and included examples from each 
type of feature (Fig. 3b and Supplementary Table 4). For low-density 
lipoprotein (LDL)-cholesterol, we observed clusters composed of lipid 
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Fig. 3 | Most informative gene features used by PoPS. a, Results using 
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Error bars represent 95% CIs around the meta-analyzed point estimate. b, Rank-
order plots for selected traits highlighting the feature clusters with the greatest 
contribution to the PoP scores of prioritized genes.
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synthesis and transport pathways in addition to liver gene expression 
features28. For glycated hemoglobin, a test that measures average blood 
sugar levels but is also affected by red blood cell levels29, we observed 
both glucose- and hemoglobin-related clusters of features. For rheu-
matoid arthritis (RA), an autoimmune disease30, we observed a range 
of immune features describing expression, signaling and production 
of immune cells and their function. Finally, for schizophrenia, we 
observed clusters corresponding to regional brain expression features 
and mechanisms previously implicated in schizophrenia, including 
calcium channel dysfunction31,32. Taken together, these results suggest 
that the PoPS can prioritize the causal genes underlying complex traits 
and diseases by learning biologically relevant properties from multiple 
types of gene features.

Development of a new evaluation gene set
We next sought to compare the PoPS with existing locus-based meth-
ods. However, the approaches we used to compare similarity-based 

prioritization methods, Benchmarker and the closest gene metric, are 
not applicable to locus-based methods. Curated gold-standard gene 
sets, in addition to being small and often unavailable for complex traits 
and common diseases, are often biased toward well-studied genes, 
potentially introducing bias when evaluating the PoPS, which uses 
existing pathway databases. Thus, we constructed a new evaluation 
set of approximate gold-standard gene–trait pairs that do not suffer 
from the same biases.

To create a new evaluation set, we first used the results of our 
recent statistical fine-mapping of 95 traits from the UK Biobank21 to 
identify probable causal genes as those harboring a fine-mapped 
(PIP > 0.5) protein-coding variant. Matching by trait, we then identi-
fied independent, noncoding credible sets within 500 kb of these 
protein-coding genes. This approach identified 1,348 noncoding cred-
ible sets with physically proximal, but independent, coding variant 
signals. We created an evaluation set from these 1,348 loci, consisting 
of all genes within 500 kb of the locus-defining, noncoding credible 
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set (median of 13 genes per locus). Genes at loci with an independent, 
fine-mapped coding variant for the same trait were labeled positive 
and genes without were labeled negative. This assignment directly 
encodes our assumptions that: (1) genes harboring a fine-mapped 
coding variant are trait relevant and (2) multiple independent associa-
tions in a locus are most likely to act through the same gene (Discus-
sion). This evaluation set allows us to directly estimate the precision 
(the proportion of prioritized genes that are labeled positive) and 
recall (the proportion of positively labeled genes that are correctly 
prioritized) of any similarity-based or locus-based gene prioritiza-
tion method.

Before considering locus-based methods, we used this new evalua-
tion set to again compare PoPS with the other similarity-based methods 
(Extended Data Fig. 4 and Supplementary Table 5). We found that PoPS 
had both higher recall and higher precision than DEPICT, NetWAS and 
MAGMA-sim using noncoding genetic signal (Methods). In addition 
we showed that PoPS using the full noncoding genetic data had both 
higher recall and higher precision than PoPS run in a LOCO framework.

Combing PoPS with locus-based methods
With these metrics, we evaluated existing locus-based methods applied 
to the set of 95 traits from the UK Biobank (Methods), where we had 
not only summary statistics, but fine-mapping results. We evaluated 
a nonexhaustive but wide range of methods:

 (1) We overlapped fine-mapped (PIP > 0.1), noncoding variants with  
predicted enhancer–gene connections from (i) correlating 
enhancer and promoter activity (E-P correlation)15,16, (ii) three- 
dimensional loops from promoter capture Hi-C (PCHi-C)12–14 and 
(iii) Activity-by-Contact (ABC)11 maps to identify genes regulat-
ed by fine-mapped variants.

 (2) We incorporated eQTL data and (i) applied a transcription-wide 
association study (TWAS)8 with Genotype Tissue Expression 
(GTEx) v.7 (ref. 33) weights to identify significantly associated 
genes, (ii) applied SMR34 with GTEx v.7 (ref. 33) weights to iden-
tify significantly associated genes and (iii) computed colocaliza-
tion posterior probabilities (CLPPs)7 with fine-mapping results 
from GTEx v.8 (refs. 21,35,36) to identify genes where the causal 
variant is shared between the complex trait and the gene expres-
sion trait.

 (3) We used the raw gene scores from MAGMA, derived from local 
association statistics without any gene features.

 (4) We identified the closest gene to the lead variant.

Before directly comparing methods, we evaluated multiple pri-
oritization criteria, using both absolute thresholds and relative rank 
within a locus (Extended Data Fig. 5, Supplementary Table 6 and Meth-
ods). Across all methods, we found that prioritizing the single best 
ranked gene in a locus had higher precision than including all genes 
passing a global score threshold, consistent with the idea that a regu-
latory variant can affect the expression of multiple genes33,35, yet only 
a select few, perhaps often the most strongly regulated, have a direct 
effect on the complex trait of interest. Thus, our primary evaluation 
of gene-prioritization methods compares only the top-ranked gene 
per locus (Methods).

All locus-based methods for prioritizing genes from noncoding 
signal showed precision <50% except CLPP, which had both the highest 
precision, 52%, and the lowest recall, 4% (Fig. 4a, Extended Data Fig. 6  
and Supplementary Tables 5 and 7). Distance had the next highest 
precision, 46%, and the highest recall, 48%. The other locus-based 
methods yielded variable precision (14–46%) and recall (5–32%). The 
low recall of most of these methods can be attributed in part to limited 
power to isolate the causal variant because of LD, limited eQTL overlap 
with complex traits at current sample sizes and missing trait-relevant 
cell types in the variant-to-gene regulatory maps. Our method, PoPS, 
showed precision and recall of 50%, which was consistent when restrict-
ing to only 46 independent traits (51%) and when further restricting 
to only allow unique validation genes rather than unique validation 
gene–trait-credible set triplets (50%).

Noting previous work on the utility of combining locus-based and 
similarity-based gene prioritization methods19,37, we investigated agree-
ment among methods, including genes with fine-mapped (PIP > 0.1) 
coding variants. For each pair of methods, we computed the number 
of loci in which both methods prioritized a gene and the proportion of 
those loci where they prioritized the same gene (Fig. 4b and Supple-
mentary Table 8). Overall, we found low concordance among methods. 
For example, PCHi-C prioritized a gene in 8,777 loci, whereas ABC-Max 
prioritized a gene in 7,913 loci; when both methods prioritized any 
gene, they agreed only 42% of the time. PoPS had mild agreement with 
most other methods, prioritizing the same gene in up to 52% of loci, 
suggesting that PoPS and locus-based methods contain independent 
information and may improve prioritization when combined.

Returning to our evaluation gene set to evaluate this hypothesis, 
we found that combining PoPS with locus-based methods improved 
precision, while maintaining appreciable recall (Fig. 4a, Extended Data 
Fig. 7 and Supplementary Table 5). Specifically, for each locus-based 
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method, intersecting the set of genes prioritized by the locus-based 
method with the set of genes prioritized by PoPS led to precision of 
at least 67% and up to 79%, depending on the locus-based method. In 
contrast, when intersecting pairs of locus-based methods, no method 
with recall >1% achieved precision >72%. Intersecting PoPS with dis-
tance increased precision from 46% for the closest gene to 79%, while 
achieving 31% recall.

High-confidence prioritized genes
We used PoPS, together with locus-based methods (PoPS + local), 
to prioritize genes across all genome-wide significant loci for 95 UK 

Biobank traits and 18 additional complex diseases for which we only had 
summary statistics (Fig. 4c, Extended Data Fig. 8 and Supplementary 
Tables 9 and 10). Using the same evaluation gene set described above, 
we find that PoPS + local has an expected precision of 74% and should 
be considered the primary results from and used case for PoPS. In total, 
we prioritized 10,642 unique gene–trait pairs at 57% of loci in this analy-
sis (Supplementary Table 11). Top genes by PoP score include many 
well-known causal genes (Fig. 5). For example, the lipid metabolism 
genes38 APOE, APOA1, APOB and PPARG were four of the top five genes 
for LDL-cholesterol. For mosaic loss of Y chromosome in circulating 
blood39, a phenotype with genetic relevance to multiple malignancies, 
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the top genes are involved in the DNA-damage response (TP53) and 
apoptosis (BCL2, BAX). For schizophrenia, the top genes by PoP score 
are the well-known dopamine receptor (DRD2)40, calcium channel genes 
(CACNA1C, CACNB2)32, an important transcriptional regulator underly-
ing developmental delay (BCL11A)40,41 and a transcription factor (TCF4) 
that is well studied in the context of schizophrenia42.

In addition we found that, when distinct locus-based methods 
nominate multiple different genes in a single locus, PoPS can be particu-
larly useful to prioritize a single candidate causal gene. For example, 
when we identified genes supported by PoPS + local but locus-based 
methods disagreed, we estimated that PoPS + local nominates the 
correct gene 70% of the time. In comparison, nominating all genes sup-
ported by at least one of the locus-based methods results in a precision 
of 22%. We highlight three specific cases where previous experiments 
and local methods have shown that the causal variant regulates multi-
ple genes, but only a single causal gene has been determined. For exam-
ple, rs1175550 was fine-mapped with PIP > 0.9 for multiple red blood 
cell traits and has been demonstrated experimentally to affect the 
expression of SMIM1, LRRC47 and CEP104 (ref. 43). Locus-based meth-
ods prioritized SMIM1, WRAP73 and C1orf74. PoPS correctly prioritized 
SMIM1, which encodes for the rare Vel blood group protein involved in 
red blood cell production44, for mean corpuscular hemoglobin con-
centration (MCH) (Fig. 6a). In another example, the variant rs737092 
was fine-mapped with PIP = 0.72 for MCH, and experimental evidence 
shows that the expression of both RBM38 and RAE1 is affected by this 
variant43 (Extended Data Fig. 9). Locus-based methods prioritized 
RBM38 and CTCFL, but PoPS correctly prioritized RBM38, which has 
been shown to play a role in splicing key erythroid transcripts during 
erythropoiesis43. As a final example, locus-based methods prioritized 
TMEM192, MSMO1, KLHL2 and CPE in a locus associated with bone 
mineral density (BMD). PoPS correctly prioritized CPE at this locus 
(Fig. 6b), the knockout of which resulted in increased bone turnover 
and low BMD in mice45.

Finally, we probed 2,004 loci where PoPS and distance to gene 
disagreed (Supplementary Table 12). When PoPS + local identified a 
gene that was not the closest to the sentinel variant, we found that 
PoPS + local had 60% precision. On the other hand, the closest gene, 
when similarly combined with a local method, had only 27% precision. 
Genes prioritized by PoPS + local that are not the closest gene prob-
ably represent a set enriched for new candidate genes. For example, 
our analysis nominated LGR4 for estimated glomerular filtration rate 
(eGFR) from cystatin C (eGFRcys), a marker of kidney function (Fig. 6c). 
LGR4 is near two credible sets that together define a locus containing 
eight genes. Three of these eight genes, including LGR4, have support 
from at least one locus-based method. LGR4 is a G-coupled protein 
receptor that activates the Wnt signaling pathway and has been shown 
to be essential for kidney development in mice46. For deep vein throm-
bosis (DVT), our analysis nominated CCR7 at a locus with 2 credible 
sets and 41 genes, including 28 genes in the keratin family and 3 genes 
supported by locus-based methods (Fig. 6d). The top PoPS features 
supporting the relevance of CCR7 were abnormal thymus medulla 
morphology, increased immunoglobulin (Ig)E level and response to 
prostaglandin. CCR7, chemokine receptor 7, is a regulator of inflamma-
tion that is involved in the development of DVT47 and may be involved 
in thrombogenesis through platelet activation48.

Discussion
We developed a new computational method, PoPS, for prioritizing 
causal genes from GWASs that predicts polygenic genetic association 
from gene expression profiles, PPI networks and pathway databases. 
We applied PoPS to summary statistics from 113 traits and showed that 
PoPS outperforms other similarity-based and locus-based methods. 
Combining PoPS with locus-based methods greatly increased precision 
while maintaining an adequate recall and is the approach we recom-
mend. Using this combined approach, we nominated several genes 

at unresolved GWAS loci, highlighting the utility of our approach for 
gene prioritization. In addition to developing PoPS, we created a large 
evaluation set of noncoding associations near fine-mapped variants in 
protein-coding genes. This set serves as a powerful tool that, unlike gene 
sets comprising mendelian disease genes or drug targets, allows us to 
evaluate both similarity-based and locus-based methods in a framework 
that is unbiased by previous trait-specific knowledge.

Although our similarity-based approach to gene prioritization 
allows for confident prediction of causal genes, it has several limita-
tions. First, our approach assumes that causal genes share biological 
characteristics captured by the gene features included in the model. 
Causal genes that act through unrelated mechanisms or genes with 
shared functions that are not described by our features would not 
be identified by PoPS. We note a similar limitation when interpreting 
locus-based methods, where we cannot distinguish whether the per-
formance of a method is limited by the methodology or the availability 
of the necessary data (for example, missing cell type specific data). 
Second, to leverage the polygenic signal, we assume that the causal 
mechanisms are shared between top loci and sub-significant loci. Third, 
although informative for ranking genes, the PoPS lacks interpretable 
units, is not comparable across traits and does not quantify uncertainty 
in the predictions. Fourth, PoPS does not directly link causal genes with 
their relevant cell types. Fifth, the joint linear model includes many 
highly correlated features, requiring ad hoc methods to interpret 
model fits and predictions. Finally, the large evaluation set has several 
limitations. As the number of noncoding associations increases, our 
simplistic assignment of noncoding associations to positive evaluation 
genes within a predefined genomic distance will probably become less 
accurate (Extended Data Fig. 10), suggesting that new methods are 
needed as sample sizes increase.

In conclusion, PoPS is a powerful tool for identifying causal genes 
from GWAS summary statistics and marks an important step toward 
building functional understanding from genetic associations. The abil-
ity to prioritize causal genes more confidently will aid in understand-
ing the underlying trait biology and nominate genes that are strong 
candidates for experimental follow-up.
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Methods
MAGMA gene z-scores
We applied MAGMA9 to the summary statistics for each trait using EUR 
individuals from the 1000 Genomes Project reference panel22 to compute 
gene-level association statistics and gene–gene correlations using the 
SNP-wise mean gene analysis and a 0-kb window around the gene body 
for mapping SNPs to genes. For each gene, MAGMA computes a gene  
P value from the mean χ2 statistic of SNPs in the gene body and its approxi-
mate sampling distribution. The gene P value is converted to a z-score 
using the probit function. The resulting z-score reflects the gene–trait 
association after correcting for LD among SNPs within the gene body. 
MAGMA approximates the gene–gene correlation matrix, R, using the 
correlations between the model sum of squares of each gene pair under 
the joint null hypothesis of no association. These correlations are a func-
tion of the LD between SNPs in each pair of genes and represent the LD 
at a gene level. To ensure a well-conditioned positive definite correlation 
matrix, we add a small value to the entries of R along the diagonal. Spe-
cifically, we add | min(λmin,0)| + 0.05 + 0.9 × max(0, var(Y ) − 1)  to each 
element along the diagonal, where λmin is the minimum eigenvalue of  
R and Y is the MAGMA z-score.

PoPS covariates
We included covariates corresponding to gene density, effective gene 
size and inverse of the mean minor allele count (MAC) of SNPs in the 
gene, as well as the log of these variables as computed by the MAGMA9 
software. MAGMA defines gene density as the ratio of the effective 
number of independent SNPs in the gene to the total number of SNPs 
in the gene, and defines effective gene size as the effective number 
of independent SNPs in the gene. In addition, we include a covariate 
corresponding to gene size and the log of this variable, defined as the 
length of the gene in base pairs.

Locus definition
From the set of associated variants with P < 5 × 10−8, we designated 
independent lead variants from which to define loci. For the 18 traits 
where we used publicly available summary statistics, we performed 
PLINK49 clumping using EUR individuals in the 1000 Genomes Project 
reference panel with a P-value threshold of 5 × 10−8 and r2 threshold of 
0.1. Within each clump, we defined the variant with the most significant 
P value as the lead variant. For the 95 traits from the UK Biobank, where 
we had fine-mapping results for regions containing genome-wide 
significant variants, we defined one locus for every independent cred-
ible set (CS). For each fine-mapped CS, we defined the variant with the 
highest posterior inclusion probability (PIP) as the lead variant. We then 
defined the locus boundaries as 500 kb on either side of the lead vari-
ant and included all genes that fell within or overlapped with the locus 
boundaries (see Extended Data Fig. 10 for sensitivity to boundary size).

Complex traits and disease associations
GWAS analyses for 95 heritable traits in the UK Biobank were performed 
as part of a fine-mapping study21. Up to 361,194 individuals of white Brit-
ish ancestry with available phenotypes and variants, with INFO > 0.8, 
minor allele frequency > 0.01% and Hardy–Weinberg equilibrium  
P value > 1 × 10−10, were included in the GWASs. Covariates for the top 
20 principal components (PCs), sex, age, age2, sex × age, sex × age2 and 
dilution factor, where applicable, were controlled for in the association 
studies. Quantitative traits were inverse rank transformed and associa-
tions were estimated using BOLT-LMM50. For binary traits, associations 
were estimated using SAIGE51. Publicly available summary statistics 
were downloaded for an additional 18 diseases (Supplementary Table 1).

Gene features
We created gene features from three main data types: (1) bulk and 
single-cell gene expression datasets, (2) curated biological pathways 
and (3) predicted PPI networks.

Bulk and single-cell gene expression datasets. For each of the 77 
gene expression datasets (Supplementary Table 2), we uniformly repro-
cessed the raw count (or normalized count when raw counts were not 
provided) matrices using Seurat v.3 (ref. 52). First, cells with total counts 
outside of the 5th to 95th quantiles were removed, and only the 18,383 
protein-coding genes used in the PoPS analysis were included. Counts 
were then scaled to counts per million, log(normalized) and scaled 
such that each gene had a mean of 0 and variance of 1 across cells. PCs 
and gene loadings were computed on scaled expression values for 
the top 1,000–3,000 variable genes using truncated singular value 
decomposition (SVD)53. Independent components and gene loadings 
were computed using fastICA54. A k-nearest neighbor graph was cre-
ated using the top PCs (based on inspection of elbow plot) and clusters 
were identified using the Louvain algorithm. The uniform manifold 
approximation and projection (UMAP) algorithm55 was used to visu-
alize clusters and investigate batch effects. When batch effects were 
visually apparent and predefined batch annotations were provided, we 
attempted to remove batch effects using the anchor approach in Seurat. 
Finally, we performed differential expression between clusters using 
a one-versus-all approach with a two-sided Welch’s t-test. We provide 
code to reproduce these analyses, a repository of processed features 
and visualizations of the top derived features at https://github.com/
FinucaneLab/gene_features.

We then derived features for PoPS: (1) on the whole dataset, (2) 
within clusters representing different cell populations and (3) between 
clusters. (1) On the whole dataset, we derived features of gene loadings 
from PC analysis and gene loadings from independent component 
analysis. (2) Within each cluster, either predefined (when available) or 
identified in our analysis, we derived features of average scaled gene 
expression and gene loadings from the top 10 PCs. (3) Comparing 
across clusters (one versus all), we derived features of a t-test statistic 
for differential expression and a binary indicator for differentially up- 
and downregulated genes (Benjamini–Hochberg’s false discovery rate 
(FDR) < 0.05 and |log2(fold-change)| > 2).

Curated biological pathways. We created features from biological 
pathways curated for DEPICT from Kyoto Encyclopedia of Genes and 
Genomes25, gene ontology24, Reactome26 and the Mouse Genome data-
bases27. Each feature was encoded as a binary indicator for membership 
to a pathway.

Predicted PPI networks. We created features using the predicted 
InWeb_IM PPI network23. For each gene, we included as a feature a 
binary indicator for the set of genes that were its first-degree neighbors.

Finally, for each distinct dataset, we included a control feature 
as a binary indicator for the set of genes that were reported in that 
dataset. All features were centered and scaled to have a mean of 0 and 
a variance of 1 across genes.

DEPICT
We ran DEPICT6 with default parameters on the summary statistics 
for each trait and DEPICT’s 14,461 reconstituted gene sets to prioritize 
genes in genome-wide significant loci. First, we performed PLINK 
clumping with a P-value threshold of 5 × 10−8, r2 threshold of 0.05 and 
distance threshold of 500 kb, as recommended by the DEPICT soft-
ware. Loci are defined by taking all genes that reside within boundaries 
defined by the most distal variants in either direction with LD > 0.5 
to the lead variant, identified by PLINK clumping. To make running 
DEPICT computationally tractable for traits with large numbers of 
genome-wide significant loci, we restricted the input to the top 1,000 
loci by the P value of the index variant. DEPICT then scores genes by 
correlating their membership to reconstituted gene sets to those 
of other genes in genome-wide significant loci and performs a bias 
adjustment for the scores. Finally, to prioritize genes in each locus, 
we prioritized the single gene in each genome-wide significant locus 
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with the most significant P value. For Benchmarker and closest gene 
enrichment analyses, DEPICT was run in a LOCO framework where, all 
variants on the chromosome for which gene P values were computed 
were removed from the summary statistics before running DEPICT.

NetWAS
NetWAS10 trains a support vector machine classifier constructed using a 
gene network. We applied NetWAS using the global network and MAGMA 
gene P values generated from the summary statistics for each trait and 
the 1000 Genomes Project reference panel22. We applied NetWAS using 
both the default threshold of P < 0.01 and Bonferroni’s significance 
threshold, which was shown in previous work to have better performance 
for well-powered GWASs17. In cases where fewer than 15 genes passed 
the significance threshold, we relaxed the P-value threshold until there 
were 15 passing genes. For Benchmarker and closest gene enrichment 
analyses, NetWAS was run in a LOCO framework where, all genes on the 
chromosome for which gene scores were being computed were removed 
from the MAGMA gene-level associations before running NetWAS.

MAGMA-sim
MAGMA-sim17, described by Fine et al. and referred to in that manu-
script as MAGMA, is an approach for leveraging individual gene-set 
enrichments to prioritize genes, by prioritizing all genes that are mem-
bers of the most highly enriched gene sets. To run MAGMA-sim, we 
computed gene set enrichment P values for the 14,461 reconstituted 
gene sets from DEPICT using MAGMA. Using the best performing 
approach from Fine et al., we binarized the reconstituted gene sets 
using a z-score threshold of z > 2.58 on the reconstituted gene sets. 
We then constructed a set of prioritized genes by: (1) ranking the gene 
sets by enrichment P value and (2) adding member genes of the most 
significant gene sets until we reached 500 prioritized genes. If the last 
added gene set contained more genes than were necessary to reach 500 
prioritized genes, we selected the required number of genes from that 
last gene set at random. For precision-recall analyses, MAGMA-sim was 
run leaving out the coding signal.

To validate MAGMA-sim in a LOCO framework, we ranked gene sets 
according to enrichment P values that were computed after removing 
genes from the test chromosome. We then added member genes of the 
most significant gene sets until we reached K prioritized genes, where 
K = 500 × (percentage of genes on test chromosome), thus prioritizing 
500 total genes across all chromosomes. MAGMA-sim is similar to PoPS 
in that it leverages genome-wide gene set enrichments from MAGMA 
for gene prioritization. However, MAGMA-sim does not perform any 
joint modeling of these gene sets, instead ranking them and prioritiz-
ing all genes in any of the top-ranked gene sets. Moreover, MAGMA-sim 
provides only a binary result for each gene—prioritized or not prior-
itized—without any ranking or quantitative score, and so can prioritize 
zero or multiple genes in a locus. We thus could not apply our closest 
gene evaluation metric to MAGMA-sim.

Benchmarker
Benchmarker17 is an unbiased, data-driven approach to evaluate gene 
prioritization methods. Based on the assumption that SNPs near causal 
genes should be enriched for trait heritability, Benchmarker uses 
stratified LD-score regression (S-LDSC)56 to estimate the average con-
tribution of SNPs near prioritized genes to per-SNP heritability. Using 
S-LDSC, Benchmarker jointly models an SNP annotation corresponding 
to prioritized genes, along with 53 annotations in the ‘baseline model’, 
which include genic, regulatory and conserved regions. To evaluate 
performance, we use the regression coefficient, τ, and its P value for 
the hypothesis τ > 0; τ measures the contribution of SNPs near prior-
itized genes to per-SNP heritability after controlling for the baseline 
annotations. To make τ comparable across traits, we normalized τ by 
the average per-SNP heritability for each trait and refer to this quantity 
as normalized τ.

For our analyses, we selected the 500 genes with the highest PoP 
scores for each trait as the set of prioritized genes and used a 100-kb 
window on either side of the transcription start site of each gene for 
mapping SNPs to genes.

Closest gene enrichment
We used a normal approximation to the null distribution for our test 
statistic, c, the number of genes that are PoPS prioritized and the closest 
gene to the lead variant in a locus. Under the null, PoPS prioritizes the 
closest gene in a locus at random with probability 1

nl
, where nl is the 

number of genes in a locus, l. Across all L loci, the distribution of c under 
this null is a sum of independent Bernoulli’s with different biases. For 
computational tractability when L is large, we approximate this by a 
normal (N) distribution with matched moments:

c ∼ N (∑
1∶L

1
nl
,
√
∑
1∶L

1
nl
(1 − 1

nl
)) .

We performed a one-sided test for c > ∑1∶L
1
nl

 under the null. In 

addition, we computed the enrichment of the number of 
PoPS-prioritized genes that are the closest to the ratio of the observed 
to the expected, c

∑1∶L
1
nl

, and estimated the s.e. of the enrichment. We 

used the bootstrap to estimate the s.e. of the enrichments, not assum-
ing a null distribution, and performed 1,024 bootstrap repetitions 
resampling the L loci for each trait.

Independent traits
To identify independent traits, we first computed genetic correlations 
between all pairs of traits using cross-trait LD-score regression57 with 
LD scores from UK10K58. Next, we created an adjacency matrix of traits 
with edge weights corresponding to whitened (|rg| < 0.2 was set to 0), 
absolute genetic correlations. We then identified the maximum inde-
pendent set of vertices (traits) such that no two were adjacent using the 
igraph package59 in R v.3.5. The resulting set contained 46 independent 
traits (Supplementary Table 1).

Feature clustering
For each trait, 50 PCs were derived from the scaled gene by feature 
matrix using truncated SVD. A feature by feature distance matrix was 
then created as the dissimilarity between features using 1 − r2 (the 
squared Pearson correlation) between PCs. Complete linkage hierar-
chical clustering was then performed on this distance matrix. Clusters 
were determined such that Pearson r2 > 0.12 for all features within a 
cluster. This inclusive threshold was chosen to reduce the impact of 
multicollinearity when interpreting the contribution of top clusters to 
PoP scores and was validated by manual investigation of within-dataset 
composition of large clusters as well as biological interpretability of 
the top clusters.

Fine-mapping
Fine-mapping was performed21 for 95 complex traits in the UK Biobank 
and 49 tissues in GTEx v.8 using the Sum of Single Effects (SuSiE) 
method60, allowing for up to 10 causal variants in each region. Prior 
variance and residual variance were estimated using the default options 
and single effects (potential 95% CSs) were pruned using the standard 
purity filter such that no pair of variants in a CS could have r2 > 0.25. 
Regions were defined for each trait as ±1.5 Mb around the most sig-
nificantly associated variant and overlapping regions were merged. 
As inputs to SuSiE, summary statistics for each region were obtained 
using BOLT-LMM50 for quantitative traits and SAIGE51 for binary traits, 
in sample dosage LD was computed using LDStore61 and phenotypic 
variance was computed empirically. Variants in the major histocom-
patibility complex region (chr6: 25–36 Mb) were excluded, as were 
95% CSs containing variants with <100 MACs. Coding (missense and 
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predicted loss of function) variants were annotated using the Variant 
Effect Predictor v.85 (ref. 62). Fine-mapping data used in the present 
study are available at https://www.finucanelab.org/data.

Precision and recall
We used our evaluation gene set to estimate the precision and recall for 
each method, evaluating the following two questions: first, if a gene is 
prioritized, how confident should we be that it is truly relevant? Second, 
what proportion of all truly relevant genes does the method prioritize? To 
answer these questions for a given method, we applied the method to the 
1,348 loci with fine-mapped coding variants, excluding the nearby coding 
signal where relevant (see below). A true positive (TP) is a prioritized gene 
that is condition positive, a false positive (FP) is a prioritized gene that is 
condition negative, a true negative (TN) is a gene that is not prioritized 
and is condition negative and a false negative (FN) is a gene that is not 
prioritized and is condition positive. The answers to our two questions 
are given, respectively, by precision, no. of TPs/(no. of TPs + no. of FPs), 
and recall, no. of TPs/(no. of TPs + no. of FNs).

ABC-Max
We used the ABC model11 to predict enhancer–gene connections in 
131 biosamples from 74 distinct cell types and tissues, based on meas-
urements of chromatin accessibility (assay for transposase-accessible 
chromatin with sequencing or DNase-seq) and histone modifications 
(H3K27ac chromatin immunoprecipitation sequencing). For each trait, 
we included only predicted enhancer–gene connections where the 
enhancer contained a fine-mapped variant (PIP > 0.1) in a credible set 
that did not contain any coding or splice-site variants. We assigned each 
gene in a locus a single score for the corresponding fine-mapped CS by 
taking the highest ABC score of predicted enhancers for that gene–CS 
pair across all biosamples that are enriched for overlapping fine-mapped 
variants for that trait. Finally, to predict a single gene for each credible 
set, ABC-Max prioritizes the gene with the highest ABC score in the locus.

E–P correlation
We downloaded predicted E–P maps based on the correlation of bio-
chemical marks at regulatory regions and expression of nearby genes 
across cell types for 808 tissues and cell lines from the FANTOM5 pro-
ject15, 127 tissues and cell lines from the ROADMAP Epigenomics project16 
and 16 primary blood cell types13. For the FANTOM5 dataset, we filtered 
for interactions with Benjamini–Hochberg’s FDR < 10−5 for a nonzero 
Pearson’s correlation. For the ROADMAP dataset, we filtered for inter-
actions with a confidence score >2.5. For the Ulirsch et al. dataset, we 
filtered for interactions with Pearson’s correlation >0.7 and a Storey 
FDR < 10−4. Finally, for each trait, we included only predicted interac-
tions where the enhancer contained a fine-mapped variant (PIP > 0.1). 
We assigned each gene in a locus a single score for each corresponding 
fine-mapped CS by taking the highest confidence score or correlation of 
predicted enhancers for that gene–CS pair across all tissues and cell lines.

PCHi-C
We downloaded PCHi-C datasets containing observed physical interac-
tions between fragmented DNA and targeted genic promoters for 28 
diverse human tissues and cell lines12 and 15 primary blood cell types14. 
For the Jung et al.12 dataset, we filtered to interactions with P values for 
interaction <0.01 and raw frequency counts >5. For the Javierre et al.14 
dataset, we filtered to interactions with CHiCAGO63 scores >5. In both 
cases, we defined a variant–gene interaction as a variant with PIP > 0.10 
overlapping with a relevant region of accessible chromatin, based on 39 
ROADMAP tissues64 for Jung et al. and 44 primary blood cell types13,65 for 
Javierre et al. Finally, for each trait, we included only predicted interac-
tions where the enhancer contained a fine-mapped variant (PIP > 0.1). 
We assigned each gene in a locus a single score for each corresponding 
fine-mapped CS by taking the highest connection strength of predicted 
enhancers for that gene–CS pair across all tissues and cell lines.

TWAS
We applied TWAS8 using the FUSION software package and precom-
puted expression reference weights for 48 tissues from GTEx v.7  
(ref. 33). To avoid leveraging the coding signal for the precision-recall 
analysis, we excluded all variants in LD (r2 > 0.2 to a coding variant 
with PIP > 0.1). For all other analyses, we included all variants in the 
GWAS summary statistics. In both cases, we took the most significant 
association across tissues for each gene. For precision-recall analy-
ses, a TWAS was run leaving out the coding signal. TWAS weights 
were obtained from http://gusevlab.org/projects/fusion/weights/
GTEX7.txt.

SMR
We applied SMR34 using the SMR software tool and precomputed 
cis-eQTL summary data across 48 human tissues from GTEx v.7  
(ref. 33). The cis-eQTL summary data were prefiltered to SNPs within 
1 Mb of the transcription start site for each gene. For precision-recall 
analyses, SMR was run leaving out the coding signal.

Colocalization posterior probability
Using fine-mapping results for 95 complex traits from the UK Biobank 
and for eQTLs in 49 tissues from GTEx v.8 (ref. 35), we computed CLPPs, 
analogous to those reported by the eCAVIAR software7. For each vari-
ant, i, fine-mapped for a complex trait, g, and an eQTL trait, e, the CLPP 
was computed asP(Cig,Cie) = P(Cig)P(Cie), where P(Cig) is the PIP of variant 
i in complex trait g and P(Cie) is the PIP of variant i in eQTL trait e. This 
quantity is an estimate of the probability that the variant is causal for 
both the complex trait and the gene expression trait. Within each 
fine-mapped CS and for each gene, we took the maximum CLPP across 
all variants and GTEx tissues.

Gene-prioritization criteria
To prevent information leakage from coding variant associations, which 
are used as part of the evaluation set, into noncoding variant-gene 
prioritizations, all variants in LD (r2 > 0.2) with a trait-associated cod-
ing variant (PIP > 0.1) were removed before running PoPS, DEPICT, 
NETWAS, MAGMA-sim, TWAS and SMR for evaluations on the set of 
1,348 loci containing a fine-mapped, protein-coding variant used as 
a positive label. We evaluated multiple prioritization criteria for each 
locus-based method and PoPS including various absolute thresholds 
and the relative rank of genes within a locus (Extended Data Fig. 5 and 
Supplementary Table 6). We chose the following prioritization criteria 
to maximize precision:

 (1) E–P correlation, PCHi-C, ABC-Max: for each locus such that at 
least one gene has a predicted connection with an enhancer 
containing a variant with PIP > 0.1, the gene that has the highest 
correlation or connection score. To combine across datasets for 
E–P correlation and PCHi-C, we included any gene prioritized in 
at least one dataset.

 (2) TWAS: for each locus such that at least one gene is significantly 
associated after Bonferroni’s correction, the gene with the most 
significant P value.

 (3) SMR: for each locus such that at least one gene is significantly 
associated after Bonferroni’s correction, the gene with the most 
significant P value.

 (4) CLPP: for each locus such that at least one gene has a variant 
with CLPP > 0.1, the gene with the highest CLPP.

 (5) Distance: for each locus, the gene that is closest to the lead vari-
ant by distance to the gene body.

 (6) PoPS: for each locus, the gene that has the highest PoP score.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

http://www.nature.com/naturegenetics
https://www.finucanelab.org/data
http://gusevlab.org/projects/fusion/weights/GTEX7.txt
http://gusevlab.org/projects/fusion/weights/GTEX7.txt
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Data availability
A repository of processed gene features, visualizations of top derived 
features and code to reproduce these analyses are available on GitHub 
at https://github.com/FinucaneLab/gene_features. Complete PoPS 
results for 95 complex traits in the UK Biobank and 18 additional dis-
ease traits, as well as results for PoPS and locus-based methods in 
genome-wide significant loci, are available at https://www.finucanelab.
org/data.

Code availability
PoPS is available as an open-source Python package at https://github.
com/FinucaneLab/pops. A static version of the PoPS method used in the 
present study is available at https://doi.org/10.5281/zenodo.8002379.
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Extended Data Fig. 1 | PoPS model parameter choices and feature selection.  
a-c, Results using Benchmarker to compare different parameter choices for 
fitting the PoPS model, meta-analyzed across independent traits (n = 46). 
Error bars represent 95% confidence intervals around the meta-analyzed point 
estimate. a, Feature selection: GLS with an L1 penalty on the full set of features 
performs less well than GLS after marginal selection using a P value < 0.05 
threshold from the two-sided Wald test. b, Error model: ordinary least squares 

(OLS) performs less well than generalized least squares (GLS) using marginal 
selection from a. c, Joint model regularization: GLS after marginal feature 
selection with an L2 penalty performs better than similar models with an L1 
penalty or no penalty. d, Number of features selected (marginal P value < 0.05 
from the two-sided Wald test) and included in the joint predictive model for PoPS 
for each trait. A legend for trait domain colors is provided in Fig. 2.

http://www.nature.com/naturegenetics
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Extended Data Fig. 2 | Additional comparisons using closest gene metric. 
a, Results using closest gene enrichment to compare similarity-based gene 
prioritization methods, meta-analyzed within each trait domain across 
independent traits (n = 46). Error bars represent 95% confidence intervals around 

the meta-analyzed point estimate. b, Results using closest gene enrichment 
to compare PoPS results using different feature sets, meta-analyzed within 
each trait domain across independent traits (n = 46). Error bars represent 95% 
confidence intervals around the meta-analyzed point estimate.

http://www.nature.com/naturegenetics
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Extended Data Fig. 3 | Comparison of gene expression features derived  
from bulk and single-cell RNA seq datasets. a, Results using Benchmarker  
to compare PoPS results using different feature sets, meta-analyzed within  
each trait domain across independent traits (n = 46). Error bars represent  
95% confidence intervals around the meta-analyzed point estimate. b, Results 

using closest gene enrichment to compare PoPS results using different feature 
sets, meta-analyzed within each trait domain across independent traits (n = 46). 
Error bars represent 95% confidence intervals around the meta-analyzed point 
estimate.

http://www.nature.com/naturegenetics
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Extended Data Fig. 4 | Comparison of similarity-based methods using precision and recall. Precision-recall plot showing performance of similarity-based 
methods.

http://www.nature.com/naturegenetics
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Extended Data Fig. 5 | Comparing prioritization criteria. Precision-recall 
plots for each method with varying prioritization criteria. Each point shows the 
precision and recall for a set of prioritized genes selected using prioritization 
criteria based on absolute thresholds and/or relative rank in a locus. For all 
methods, the star represents the final chosen criteria. a, Circles: PoP scores 
ranked ≤ 2–5 in the locus. Star: highest PoPS score in the locus. b, Plus: significant 
TWAS P value after Bonferroni correction (P < 0.05/235,584). Circles: TWAS  
P values ranked ≤ 2–5 in the locus. Star: significant TWAS P value after Bonferroni 
correction (P < 0.05/235,584) and the most significant in the locus. c, Pluses: 
CLPP > 0.01, 0.1, 0.5, 0.9, and 0.99. Circles: CLPP > 0.01, 0.1, 0.5, 0.9, and 0.99 and 
also the highest CLPP in the locus. Star: CLPP > 0.1 and also the highest CLPP in 
the locus. d, Plus: any predicted connection from ABC. Circles: ABC connection 
strength ranked ≤ 2–5 in the locus. Star: highest ABC connection strength in the 

locus. e, Pluses: any predicted connection from PCHiC for individual datasets. 
Triangle: any predicted connection from PCHi-C in any dataset. Circles: highest 
connection strength in the locus for individual datasets. Star: highest connection 
strength in the locus in any dataset. f, Pluses: any predicted connection from  
E-P correlation for individual datasets. Triangle: any predicted connection from 
E-P correlation in any dataset. Circles: highest connection strength in the locus 
for individual datasets. Star: highest connection strength in the locus in any 
dataset. g, Circle: closest gene by distance to the transcription start site. Star: 
closest gene by distance to the gene body. h, Circles: MAGMA z-scores ranked  
≤ 2–5 in the locus. Star: highest MAGMA score in the locus. i, Plus: significant SMR  
P value after Bonferroni correction (P < 0.05/18,383). Circles: SMR P values 
ranked ≤ 2–5 in the locus. Star: significant SMR P value after Bonferroni 
correction (P < 0.05/18,383) and the most significant in the locus.

http://www.nature.com/naturegenetics
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Extended Data Fig. 6 | Performance of PoPS and locus-based gene prioritization methods by trait. Precision-recall plots for each method. Each point represents a 
single trait colored by trait domain. Only traits for which the method prioritized at least five genes in the validation loci were included. A legend for trait domain colors 
is provided in Fig. 2.

http://www.nature.com/naturegenetics
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Extended Data Fig. 7 | Additional performance metrics using evaluation 
gene set in 1,348 non-coding loci containing genes that harbor fine-mapped 
protein coding variants. a, Sensitivity-specificity plot showing performance 
of locus-based methods, PoPS, intersections of pairs of locus-based methods, 
and intersections of PoPs with locus-based methods on the evaluation gene set 

of 589 genes with fine-mapped protein coding variants. b, Heatmap showing 
performance using the F-score of locus-based methods, PoPS, intersections 
of pairs of locus-based methods, and intersections of PoPs with locus-based 
methods.

http://www.nature.com/naturegenetics
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Extended Data Fig. 8 | Number of prioritized genes for non-UK Biobank 
traits. Number of unique gene-trait pairs prioritized by PoPS, locus-based gene 
prioritization methods, and their intersections, sorted by estimated precision. 
The full height of each bar represents the total number of genes prioritized.  

The opaque portion of each bar represents the expected number of true causal 
genes prioritized. Methods to the left of the dashed line achieve precision greater 
than 75%.

http://www.nature.com/naturegenetics
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Extended Data Fig. 9 | Known example RBM38. Top: summary statistics colored 
by LD to the lead variant and fine-mapping results for variants in the locus 
colored by credible set. Bottom: results from PoPS and locus-based methods 

for all genes in the locus. Genes are colored by strength of prediction for each 
method with a star denoting the prioritized gene. Variant rs737092, RBM38 for 
mean corpuscular hemoglobin (MCH).

http://www.nature.com/naturegenetics
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Extended Data Fig. 10 | Sensitivity of precision and recall estimates to  
locus definition. a, Loci defined as +/− 100 kb on either side of the lead variant.  
b, Loci defined as +/− 1 Mb on either side of the lead variant. c, Results restricted 

to loci in fine-mapped regions with three or fewer independent credible sets.  
d, Results restricted to loci in fine-mapped regions with five or fewer 
independent credible sets.

http://www.nature.com/naturegenetics
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