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Abbreviations used

AERD: Aspirin-exacerbated respiratory disease

CRSwNP: Chronic rhinosinusitis with nasal polyps

CRTH2: Chemoattractant receptor–homologous molecule

expressed on TH2 cells

ECP: Eosinophilic cationic protein

GO: Gene Ontology

ILC2: Type 2 innate lymphoid cells

LTB4: Leukotriene B4

LTE4: Leukotriene E4

PGD2: Prostaglandin D2

PGF2a: Prostaglandin F2a
TXB2: Thromboxane B2
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Background: Eosinophilic asthma and nasal polyposis are
hallmarks of aspirin-exacerbated respiratory disease (AERD),
and IL-5 inhibition has been shown to provide therapeutic benefit.
However, IL-5Ra is expressed on many cells in addition to
eosinophils, and themechanisms bywhich IL-5 inhibition leads to
clinical benefit in eosinophilic asthma and nasal polyposis are
unlikely to be due exclusively to antieosinophil effects.
Objective: We sought to identify the mechanisms by which anti–
IL-5 treatment with mepolizumab improves respiratory
inflammation in AERD.
Methods: The clinical characteristics, circulating granulocytes,
nasal scraping transcripts, eosinophilic cationic protein,
tryptase, and antibody levels, and urinary and nasal eicosanoid
levels were measured for 18 subjects with AERD who were
taking mepolizumab and compared with those of 18 matched
subjects with AERD who were not taking mepolizumab.
Results: Subjects taking mepolizumab had significantly fewer
peripheral blood eosinophils and basophils, and those cells that
remained had higher surface CRTH2 expression than did the
cells from subjects not taking mepolizumab. Nasal
prostaglandin F2a, prostaglandin D2 metabolites, leukotriene
B4, and thromboxane levels were lower in subjects taking
mepolizumab, as were urinary levels of tetranor–prostaglandin
D2 and leukotriene E4. The nasal epithelial cell transcripts that
were overexpressed among subjects with AERD who were
taking mepolizumab were enriched for genes involved in tight
junction formation and cilium organization. Nasal and urinary
prostaglandin E2, tryptase, and antibody levels were not
different between the 2 groups.
Conclusion: IL-5 inhibition in AERD decreases production of
inflammatory eicosanoids and upregulates tight junction–
associated nasal epithelial cell transcripts, likely due to
decreased IL-5 signaling on tissue mast cells, eosinophils, and
epithelial cells. These direct effects on multiple relevant immune
cells contribute to the mechanism of benefit afforded by
mepolizumab. (J Allergy Clin Immunol 2021;148:574-84.)

Key words: Aspirin-exacerbated respiratory disease, IL-5, nasal
polyp, mepolizumab, prostaglandin F2a, prostaglandin D2,
CRTH2, chronic rhinosinusitis, leukotriene

Aspirin-exacerbated respiratory disease (AERD) is character-
ized by chronic eosinophilic type 2 inflammation of the upper and
lower airways and marked by chronic rhinosinusitis with nasal
polyps (CRSwNP), difficult-to-control asthma, and pathogno-
monic respiratory reactions to medications that inhibit
cyclooxygenase-1. Nasal polyps are associated with nasal
obstruction and anosmia, significant impairment in quality of
life, and substantial medical resource consumption,1,2 and they
are remarkably severe and recalcitrant in patients with AERD.3

The mechanisms underlying the severe nasal polyposis and
difficult-to-control asthma in patients with AERD are complex.
Tissue eosinophilia is more pronounced in patients with AERD
than in patients with aspirin-tolerant CRSwNP,4 but the role of eo-
sinophils in disease pathogenesis is unclear. A recent study of
dexpramipexole, an experimental drug that nearly completely de-
pletes all eosinophils from within the blood and nasal polyp tis-
sue, failed to show any significant improvement of symptoms or
reduction in nasal polyp size in patients with CRSwNP.5 This
‘‘negative’’ study suggests that although the tissue eosinophilia
in most patients with CRSwNP and AERD is substantial, eosino-
phils are not the main effector cells that drive ongoing inflamma-
tion in the disease.

Mast cell–derived mediators, epithelial barrier dysfunction,
and locally produced antibodies are also thought to contribute to
tissue inflammation in CRSwNP. Activated tissue mast cells play
an important role in AERD pathophysiology, with ongoing
release of inflammatory mediators, including cysteinyl leukotri-
enes and prostaglandin D2 (PGD2).

6-8 PGD2 can then amplify res-
piratory inflammation by binding the chemoattractant receptor–
homologous molecule expressed on TH2 cells (CRTH2) receptor,
which is expressed on eosinophils, basophils, type 2 innate
lymphoid cells, and TH2 cells. Defects in epithelial barrier integ-
rity and epithelial tight junction expression have been noted in
CRSwNP and AERD, leading to increased permeability and
compromised host defense responses within the upper airway.9,10

Further, elevated levels of several antibody classes have been
noted within nasal polyp tissue.11 We recently found elevated
levels of local IgE within the nasal polyps in patients with
AERD and described a role for local nasal tissue IgE in relation
to the rapidity of nasal polyp regrowth. This study also identified
elevated IL-5Ra transcript and surface expression in plasma cells
from subjects with AERD, and it found that IL-5 signaling on
plasma cells may play a role in facilitating their survival.12

A more complete understanding of the role of IL-5/IL-5Ra
signaling in inflammatory disorders has both mechanistic and
therapeutic implications.

Humanized mAbs against IL-5 or IL-5Ra demonstrate efficacy
in the treatment of eosinophilic asthma, and studies suggest
improvement in some patients with nasal polyposis.13,14

A phase 2 trial of IL-5 inhibition with mepolizumab in patients
with CRSwNP showed that 60% of the subjects in the mepolizu-
mab treatment arm experienced a therapeutic responsewith a cor-
responding decrease in total polyp score,15 and we reported that
mepolizumab can improve both upper and lower airway symp-
toms in some subjects with AERD.16 Although the mechanism
of response in the subset of patients for whom mepolizumab is
efficacious has been attributed to the effects of inhibition of IL-
5 on eosinophils, IL-5Ra is expressed on many relevant cells,
including mast cells, basophils, B cells, plasma cells, some T
cells, and ciliated epithelial cells.17-20 Further, it was recently
shown that human airway epithelial cells express functional IL-
5Ra and that IL-5 signaling leads to downregulation of adhesion
molecules, suggesting that IL-5 may reduce the strength of the
epithelial barrier through weakening of cell-to-cell adhesions.19
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Given our recent findings that IL-5Ra expression is increased
in nasal polyp cells from subjects with AERD12 and the negative
results of the clinical trial of eosinophil depletion with dexprami-
pexole in CRSwNP, we suspect that targeting of IL-5 or IL-5Ra
may work through multiple cellular mechanisms, in addition to
inhibition of eosinophils. In this study, we sought to explore the
effect of treatment with mepolizumab, a mAb targeting IL-5, on
mast cell activation, antibody and eicosanoid production, and
nasal epithelial transcript expression in subjects with AERD.
METHODS

Patient characterization
Subjects between the ages of 18 and 75 years were recruited from the

Brigham and Women’s Hospital (Boston, Mass) Allergy and Immunology

Clinics between October 2018 and October 2019 (Table I). The Mass General

Brigham Institutional Review Board approved the study, and all subjects pro-

videdwritten informed consent. The patients with AERD all had asthma, nasal

polyposis, and a diagnosis of AERD confirmed via a physician-observed

graded oral challenge to aspirin, which induced objectively defined upper

and/or lower respiratory symptoms, including nasal congestion, rhinorrhea,

sneezing, ocular pruritus, conjunctival injection, wheezing, dyspnea, and/or

fall in FEV1 value.

Subjects withAERDwhomet the clinical criteria for theUS Food andDrug

Administration–approved use of monthly mepolizumab (100 mg subcutane-

ously) for treatment of severe, uncontrolled, eosinophilic asthma and who had

been receiving treatment with mepolizumab for at least 3 months were

recruited. Subjects had been started on mepolizumab by their pulmonologist

or allergist/immunologist as part of their usual clinical care. Subjects taking

mepolizumab were compared with an age-, sex-, and disease severity–

matched control population of patients with AERD who elected not to use

mepolizumab either because of insurance rejection or because of a desire to

avoid use of a biologic agent. Subjects were excluded if they were taking any

other biologic therapy within 6 months of enrollment.
Clinical procedures
All subjects had a single study visit at Brigham and Women’s Hospital.

Biologic specimens, including urine, blood, nasal fluid, and nasal cells from

the inferior turbinate, were collected, as were clinical parameters, FEV1 value,

and patient-reported outcome measures, including 22-Item Sino-Nasal

Outcome Test and Asthma Control Questionnaire-6 scores.
Specimen procurement
Peripheral blood was drawn into heparinized tubes and processed or

assayed within 1 hour of collection. Serum was obtained from the top layer

after a 15-minute centrifugation at 1500 g at 48C. Nasal secretions were

sampled separately from both nostrils by using Nasosorption FX-R (Hunt De-

velopments Ltd, Midhurst, United Kingdom), which is a noninvasive upper

airway sampling method that uses a synthetic absorptive matrix to collect

nasal mucosal lining fluid directly from the nasal mucosal surface. Nasal se-

cretions were placed in either 300 mL of 0.5% BSA (2 samples from 1 nostril)

or 300 mL of 100% methanol (from the other nostril) and were then stored in

75-mL, 150-mL, or 200-mL aliquots at –808C until analysis.21 Nasal epithelial

tissue was collected from the inferior turbinate by using the Rhino-Pro

Curette, a sterile, disposable mucosal collection device, as described.22 One

sample was taken from the right or left mid-inferior portion of the inferior

turbinate by using a gentle scraping motion and was then placed directly in

RNAprotect Tissue Reagent (Qiagen, Germantown, Md). Urine was collected

and stored at –808C until further analysis.
Flow cytometry
Peripheral blood was kept at room temperature, and 50 mL of whole blood

was used per staining condition. Red blood cells were lysed within 30 minutes
of staining, and cells were fixed in 1% paraformaldehyde. Eosinophils were

identified as CD451/CCR31 cells within the granulocyte gate on forward scat-

ter (FSC)/side scatter (SSC), basophils were identified as CD45low/CCR31

cells within the SSClow/lymphocyte gate, and neutrophils were identified as

CD451/CD161 cells within the SSChigh/FSChigh granulocyte gate (for gating

strategy, see Fig E1 in the Online Repository at www.jacionline.org). Surface

CRTH2 expression was measured on eosinophils and basophils as compared

to an isotype control. All antibodies were commercially available from either

BioLegend (San Diego, Calif) or BD Biosciences (San Jose, Calif); the spe-

cific details regarding vendor, clone, and fluorophore are included in Table

E1 (available in this article’s Online Repository at www.jacionline.org). As

cells were stained immediately after collection, no live-dead stain was used.
Mediator quantification
Nasal secretions and serum were measured for levels of total IgG

(Invitrogen, Waltham Mass), IgA (Invitrogen), IgE (Invitrogen for serum

and Abcam, Cambridge, Mass, for nasal secretions) and IgG4 (eBioscience,

San Diego, Calif) by ELISA, according to the manufacturer’s instructions.

Serum was further analyzed for IL-5 by ELISA (R&D Systems, Minneapolis,

Minn) and for total tryptase at Virginia Commonwealth University. Nasal

secretions were further analyzed for eosinophilic cationic protein (ECP) by

ELISA (Lifespan Biosciences, Seattle, Wash). Urinary eicosanoids (Vander-

bilt University, Nashville, Tenn) and nasal eicosanoids (University of

California San Diego, San Diego, Calif) were measured by using gas

chromatography–mass spectrometry.23
Inferior nasal turbinate epithelial cell bulk RNA

sequencing
For bulk RNA sequencing, epithelial cells were sampled from the inferior

turbinate via nasal curettage as described earlier in this article. RNA was

normalized to 10 ng as the input amount for a 2.2X SPRI ratio cleanup using

Agencourt RNAClean XP beads (Beckman Coulter, catalog no. A63987).

After oligo-dT priming, Maxima H Minus Reverse Transcriptase (Thermo-

Fisher, catalog no. EP0753) was used to synthesize cDNAwith an elongation

step at 528C before PCR amplification (15 cycles) using KAPA HiFi PCR

Mastermix (Kapa Biosystems KK2602). Sequencing libraries were prepared

using the Nextera XT DNA tagmentation kit (Illumina FC-131-1096) with

250-pg input for each sample. Libraries were pooled after processing with

the Nextera kit and cleaned usingAgencourt AMPure SPRI beads with succes-

sive 0.73 and 0.83 ratio SPRIs and sequenced with an Illumina 75 Cycle

NextSeq500/550v2.5 kit (Illumina FC-404-2005) with a loading density at

2.2 pM, with a paired-end 35-cycle read structure. Samples were sequenced

at an average read depth of 9.7million reads per sample. Samples were aligned

to the Hg19 genome and transcriptome by using STAR and RSEM.24,25 Sam-

ples with an alignment rate less than 20% were not analyzed further. After

concatenation of read counts for technical replicates, differential expression

analysis was conducted by using the DESeq2 package for R, taking patient

origin into account.26 Genes with Benjamini-Hochberg–adjustedP values cor-

responding to a false discovery rate less than 0.05 were regarded as differen-

tially expressed. Preranked genes with an unadjusted P value of .05 or less

were used for enrichment analysis based onGeneOntology (GO) (theGOBio-

logical Process) and Kyoto Encyclopedia of Genes and Genomes pathways,

using GEne SeT AnaLysis Toolkit.27 Expression levels of genes enriched

for tight junction pathway and hierarchic clustering analysis was performed

with the R tool pheatmap (version 1.0.12).

See the Methods section of this article’s Online Repository for additional

details regarding single-cell RNA sequencing analysis of surgically excised

sinus tissue to identify sinus tissue cells expressing IL5RA.
Statistical analysis
Data are expressed as means6 SEMs unless otherwise noted. The 2-sided

unpaired Student t test, Mann-Whitney test, and Fisher exact test were used

to assess differences between patients with AERD who were taking

http://www.jacionline.org
http://www.jacionline.org


TABLE 1. Patient characteristics

Characteristic Mepolizumab (n 5 18) Control (n 5 18) P value

Age (y), mean 6 SEM 53.9 6 3.1 47.2 6 2.7 .11*

Sex (% female) 50% 61% .74�
FEV1 % predicted, mean 6 SEM 74.8 6 3.9 83.7 6 3.5 .10*

SNOT-22 score, mean 6 SEM 34.7 6 5.1 38.3 6 6.3 .66*

ACQ-6, mean 6 SEM 1.0 6 0.2 1.1 6 0.3 .70*

Daily aspirin use (% of patients taking aspirin) 33% 22% .71�
Zileuton (% of patients taking zileuton) 28% 11% .40�
Budesonide sinonasal irrigation use (% of patients taking undergoing budesonide irrigations) 89% 83% >.99�
Duration of mepolizumab use (mo), mean (range) 15.9 (5-32) N/A

ACQ-6, Asthma Control Questionnaire-6; N/A, not applicable; SNOT22, 22-Item Sino-Nasal Outcome Test.

*Student t test.

�Fisher exact test.

J ALLERGY CLIN IMMUNOL

VOLUME 148, NUMBER 2

BUCHHEIT ET AL 577
mepolizumab and the controls. Correlation between biomarkers was assessed

by using the Pearson correlation coefficient. Analysis was performed using

GraphPad Prism software, version 7.0d (GraphPad, La Jolla, Calif).
RESULTS

Study population and demographics
In all, 18 subjects with physician-diagnosed AERD and severe,

uncontrolled eosinophilic asthma who were being treated with
mepolizumab as an add-on asthma maintenance therapy and 18
subjects with AERD who were not taking mepolizumab
participated in the study (Table I). There were no statistically sig-
nificant differences in age, sex, FEV1 value, Asthma Control
Questionnaire-6 score, or 22-Item Sino-Nasal Outcome Test
score between the groups, although there was a trend toward
lower FEV1 values in the mepolizumab group. There were no dif-
ferences in use of high-dose daily aspirin therapy and zileuton (a
5-lipoxygenase inhibitor) between groups; no patients were tak-
ing oral corticosteroids. In all, 16 of 18 patients in the mepolizu-
mab group and 15 of 18 patients in the control group used nasal
budesonide irrigations.
Blood eosinophil and basophil levels are reduced,

and their CRTH2 expression is increased, in subjects

taking mepolizumab
Peripheral blood eosinophil and basophil levels, reported as a

percentage of CD451 cells, were lower in the patients with AERD
who were being treated with mepolizumab than in the controls
(Fig 1, A and B [P < .0001 and P 5 .0083, respectively]). There
was no difference in the numbers of neutrophils measured as a
percentage of CD451 cells (Fig 1, C).

The surface expression of CRTH2 on both blood eosinophils
and basophils, calculated as a median fluorescence intensity, was
higher in the subjects treated with mepolizumab than in the
controls (Fig 1, D and E [P 5.002 and P5 .0002, respectively]).
Effects of mepolizumab treatment on nasal and

urinary eicosanoid levels
Nasal fluid levels of prostaglandin F2a (PGF2a) metabolites

(PGF2a 1 tetranor-PGFM) were significantly decreased in sub-
jects with AERD treated with mepolizumab compared with in
the controls (Fig 2, B). Although not statistically significant, nasal
levels of the PGD2 metabolite DHKPGD2 were on average lower
in subjects treated with mepolizumab; the 8 highest DHKPGD2
levels were all in untreated subjects (Fig 2, A). Both nasal throm-
boxane B2 (TXB2) and LTB4 levels were also decreased in the
mepolizumab-treated patients (Fig 2, C and D [P 5 .002 and
P5 .03, respectively]). Urinary levels of tetranor-PGDM trended
to be lower in subjects taking mepolizumab, and urinary levels of
leukotriene E4 (LTE4) were significantly decreased (Fig 2, E and
F). Further, the nasal levels of both DHKPGD2 and the PGF2ame-
tabolites were inversely correlated with surface CRTH2 expres-
sion of both circulating eosinophils and basophils (Fig 3, A-D).

We did not detect differences in nasal PGE2, nasal tetranor-
PGEM, or urinary PGEM levels between subjects treated with
mepolizumab and the controls (data not shown). There were no
differences in nasal or urinary eicosanoid levels in the patients un-
dergoing daily high-dose aspirin therapy versus in the patients not
taking a daily aspirin in either the mepolizumab group or the con-
trol group.
Nasal eosinophilic cationic protein and serum IL-5

levels
Nasal fluid ECP levels did not differ between patients taking

and not taking mepolizumab (2316 pg/mL6729 and 3171 pg/mL
61193, respectively [P 5 .71]; data not shown). Serum IL-5
levels were significantly higher in subjects treated with mepolizu-
mab than in those not taking mepolizumab (34.1 pg/mL 6 33.3
and 2.3 pg/mL 63.1, respectively [P < .0001]; data not shown).
Nasal and serum antibody levels and tryptase are

unchanged in subjects taking mepolizumab
There was no difference in levels of IgE and IgG4 in the nasal

secretions or serum of patients taking or not taking mepolizumab
(Fig 4, A-D). Serum tryptase levels also did not differ between pa-
tients taking or not taking mepolizumab (5.6 ng/mL 6 0.6, and
6.5 ng/mL 6 0.8, respectively [P 5 .26]). We could not detect
nasal tryptase levels in an adequate number of subjects in each
group to compare nasal tryptase levels between groups.
Inferior turbinate RNA sequencing
Weutilized a previously generated single-cell RNA sequencing

data set to identify sinus tissue cells that express IL5RA and found
the highest expression of IL5RA in sinus tissue plasma cells, cili-
ated epithelial cells, andmast cells (Fig 5,A). Analysis of the infe-
rior turbinate scraping samples (14 samples from subjects treated
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with mepolizumab and 11 samples from patients not undergoing
treatment had sufficient quality for inclusion) revealed that 242
genes were differentially regulated, including 94 upregulated
genes and 148 downregulated genes in subjects treated with me-
polizumab, which passed the false discovery rate with an adjusted
P value less than .05 (see Table E2 [in the article’s Online Repos-
itory at www.jacionline.org]). On the basis of prior single-cell
RNA sequencing, we recovered T cells, eosinophils, mast cells,
neutrophils, and myeloid cells, as well as basal, secretory, and
ciliated epithelial cells from inferior turbinate scrapings. Approx-
imately 75% of the cells recovered from the inferior turbinate
scrapings were epithelial cells.28 We enriched these differentially
expressed genes in the Kyoto Encyclopedia of Genes and Ge-
nomes database and noted that the tight junction (hsa04530)
pathway was enriched. GO biologic process enrichment analysis
additionally revealed induction of the GO term GO cilium
organization in the mepolizumab-treated group. Of 169 genes
from the Tight Junction gene set, 19 were present in our differen-
tially expressed genes; of these 19 genes, 15 were upregulated and
4 were downregulated. The upregulated genes included TJP3
(tight junction protein 3),29 ACTN4 (actinin-4 protein, which is
involved in tight junction assembly in epithelial cells),30 and
AMOT (angiomotin, which is part of a tight junction–associated
protein complex).31 However, several genes involved in tight
junction formation, such as CLDN17 (claudin 17),32 were also
downregulated (Fig 5, B).
DISCUSSION
Overall, our results comparing differences in a variety of

inflammatory mediators and cellular readouts in patients with
AERD show that IL-5 inhibition induces a wide array of disease-

http://www.jacionline.org
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levels of tetranor-PGDM (E) and LTE4 (F). NS, Not significant.
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relevant immunologic changes. Although the effects of IL-5
inhibition on eosinophils are important, we suspect that many of
the mepolizumab-induced differences found in this study are due
to the consequences of decreased IL-5 signaling on other immune
cells, including mast cells, basophils, and epithelial cells within
the respiratory system.

Considering the role of IL-5 on both eosinophils and basophils,
themepolizumab-induced decrease in circulating eosinophils that
we found is expected and the reduction in basophils follows as
well.33 However, although eosinophilic infiltration into both the
upper and lower respiratory tissues is a hallmark of AERD, com-
plete pharmacologic depletion of tissue eosinophils does not pro-
vide therapeutic benefit. Therefore, other effector cells must be
playing a key role in this disease.5 Nasal fluid ECP correlates
strongly with nasal eosinophilia and thus can serve as a surrogate
biomarker for local eosinophil numbers.34 As was shown in the
phase 2 study of mepolizumab in CRSwNP,14 we too found that
the level of nasal ECP was not significantly decreased in the
mepolizumab-treated patients compared with in the untreated pa-
tients. The lack of a mepolizumab-induced decrease in nasal ECP
level suggests that nasal eosinophil numbers may not be
dramatically altered by the treatment, although most subjects
with CRSwNP who are treated with mepolizumab experience a
therapeutic response and a decrease in polyp burden.14 Given
this, we suspect that the mechanisms by which mepolizumab pro-
vides therapeutic improvement for the responding subset of pa-
tients with CRSwNP is largely unrelated to a decrease in nasal
polyp eosinophils.

A decrease in levels of PGD2, LTE4, and PGF2a (Fig 2, A, B, E,
and F) may well underlie some of the mechanism of the benefit
afforded by mepolizumab. These 3 eicosanoids are all known to
be proinflammatory in AERD.6,23,35 Elevated tissue levels of
PGD2 inAERD can lead to both nasal edema through vasodilation
(mediated through theDP1 receptor),36 and activation and recruit-
ment of eosinophils, basophils, and ILC2s (mediated through the
DP2/CRTH2 receptor).37,38 LTE4, the end product of cysteinyl
leukotriene metabolism, is a major mediator of both the chronic
disease in AERD and the acute aspirin-induced reactions.39,40

PGF2a has, been less thoroughly studied in AERD, although its
levels do rise during aspirin-induced reactions,41 and PGF2a can
induce bronchoconstriction and bronchial hyperreactivity.42,43

Furthermore, like PGD2, PGF2a is a CRTH2 agonist.44 As both
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FIG 5. Sinus tissue single-cell RNA sequencing and hierarchical clustering analysis of nasal inferior

turbinate scraping transcriptomic changes in mepolizumab-treated patients. A, T-stochastic neighbor

embedding (t-SNE) plot of 18,036 surgically excised sinus tissue cells from subjects with AERD (n 5 3 sam-

ples), CRSwNP (n5 3 samples), and chronic rhinosinusitis without nasal polyps (n5 5 samples) colored by

cell type (left) and IL5RA expression (right). B, Unsupervised hierarchical clustering analysis of tight

junction–related genes shows clustering of mepolizumab-treated subjects and untreated control subjects,

with induction of tight junction–related genes in the mepolizumab-treated group (row-normalized gene

expression values of

P < .05 for all genes).
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PGD2 and PGF2a are full agonists of the CRTH2 receptor and can
lead to activation, mobilization, and degranulation of eosinophils
and basophils,44-46 their reduction would allow for decreased
activation of these granulocytes. Further corroborating this is
our finding that the circulating eosinophils and basophils remain-
ing in the blood of patients treated with mepolizumab had
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significantly higher surface expression of CRTH2 (Fig 1, D and
E). The likely explanation for this novel finding is that CRTH2
stimulation by either PGD2 or PGF2a leads to receptor internali-
zation and reduced surface expression; following removal of the
eicosanoid stimuli, an increase in CRTH2 expression would
be expected.46,47 Nasal polyp tissue mast cells also express
CRTH2, and CRTH2 signaling on mast cells may lead to intracel-
lular calciummobilization and cellular migration, suggesting that
decreased local levels of PGD2 may also lead to less mast cell
activation and accumulation.48,49

The mechanism by which mepolizumab reduces PGD2, LTE4,
and PGF2a is likely through direct inhibition of IL-5Ra signaling
on eosinophils, basophils, andmast cells. PGD2 and LTE4 are pro-
duced by eosinophils, basophils, and mast cells.50-54 PGF2a is
produced by eosinophils and mast cells41,55,56 and possibly by ba-
sophils and respiratory epithelial cells as well.57-59 For all 3 of the
granulocytes, production of LTE4 is upregulated following stim-
ulation with IL-5,50,53,54,60 suggesting that inhibition of IL-5
signaling with mepolizumab would decrease cellular release of
LTE4. Although IL-5 stimulation has not been directly linked to
increased release of PGD2, there is cross-talk between the stimu-
latory roles of PGD2 and cysteinyl leukotrienes; as cysteinyl leu-
kotrienes can stimulate PGD2 production, mepolizumab-induced
decreases in LTE4 may in turn reduce granulocyte production of
PGD2.

41,61 IL-5 stimulation of human bronchial epithelial cells
also leads to upregulation of the enzymes required to make
PGF2a, suggesting that mepolizumab-induced inhibition of that
pathway could decrease PGF2a release from the respiratory
epithelium.19

The levels of 2 additional eicosanoids, TXB2 and LTB4, were
also lower in the nasal fluid of the patients treated with mepo-
lizumab than in the nasal fluid of those not undergoing mepoli-
zumab treatment, indicating a broad effect of IL-5 inhibition on
eicosanoid metabolism (Fig 2, C and D). A decrease in local
TXB2 levels may be of particular therapeutic importance in
AERD, as platelet activation and platelet-dependent inflamma-
tion play a role in the chronic respiratory inflammation and
the acute aspirin-induced reactions.62,63 Although the direct ef-
fect of IL-5 on TXB2 production by immune cells is not known,
both sinus tissue mast cells and eosinophils have the capacity to
produce it.64 The inflammatory role of LTB4 in respiratory
inflammation and asthma has also been well documented,65

with high levels of LTB4 also noted within nasal polyp tissue.66

Neutrophils are a primary source of LTB4, and although human
lung neutrophils do have functional IL-5Ra,67 whether IL-5
stimulation of neutrophils affects their LTB4 release is not
known. Both eosinophils and basophils can also produce
LTB4,

68 and IL-5 priming of rat basophilic leukemia-1 cells
does increase their production of LTB4,

69 suggesting a mecha-
nism by which IL-5 inhibition could lead to decreased local
LTB4 levels in the sinuses.

Our finding of variable mepolizumab-induced differential
expression of tight junction–related transcripts in the inferior
turbinate scrapings is of unclear clinical significance. A number
of the transcripts found to be upregulated in patients taking
mepolizumab, includingACTN4 andAMOT, were also noted to be
downregulated in human bronchial epithelial cells stimulated
ex vivowith IL-5.19 Therefore, the epithelial cell transcript differ-
ences noted in our study could indeed be a result of in vivo inhi-
bition of IL-5. The variability of the differences between subjects,
and the finding that some tight junction–associated transcripts
were actually downregulated in subjects taking mepolizumab,
suggests that these changes are unlikely to be the sole driving
mechanism underlying the therapeutic benefit of mepolizumab
that is experienced by patients with CRSwNP. Additionally, we
see that ciliated epithelial cells express IL-5Ra (Fig 5, A) and
there is enrichment of genes related to cilium organization in
the mepolizumab-treated group, suggesting that inhibition of
IL-5 may also affect ciliated epithelial cells in the nasal tissue.

The treatment-induced increase in serum IL-5 found in this
study is consistent with the known effects of anti–IL-5 treat-
ment.70 The serum IL-5 detected during treatment with mepolizu-
mab may be part of a bound immunoglobulin complex that
prolongs the half-life of IL-5, leading to detection of increased
levels.71 One major limitation of this study is that the case-
control design captured clinical and mechanistic data from only
a single visit, without any longitudinal data available to gauge
each patient’s response to mepolizumab. Therefore, the
treatment-related immunologic differences seen in this study
are presumed to be directly mediated by mepolizumab, but
without repeat measures, this cannot be fully confirmed. Addi-
tionally, we are not able to determine the extent of clinical
response to mepolizumab or relate any of the mepolizumab-
related immunologic differences to a responder/nonresponder
analysis. Despite these shortcomings, our findings clearly show
that there are immunologic changes that occur following treat-
ment with mepolizumab and extend beyond just the predicted ef-
fects of IL-5 inhibition on eosinophils. We conclude that IL-5
inhibition with mepolizumab in patients with AERD leads to
decreased production of relevant inflammatory eicosanoids,
including PGD2, PGF2a, and cysteinyl leukotrienes, as well as
to upregulation of nasal epithelial cell transcripts involved in tight
junction pathways and cilium organization. These changes are
likely due to the combined effects of decreased IL-5 signaling
on local respiratory tissue eosinophils, basophils, mast cells,
and epithelial cells, all of which have functional IL-5Ra.

Key messages

d Compared with patients with AERD not treated with me-
polizumab, subjects with AERD treated with mepolizu-
mab had decreased production of inflammatory
eicosanoids and upregulation of nasal epithelial cell tran-
scripts involved in tight junction pathways and cilium
organization.

d These effects of mepolizumab are likely due to decreased
signaling of IL-5 on local respiratory tissue eosinophils,
basophils, mast cells, and epithelial cells.

d The mechanism by which IL-5 inhibition provides thera-
peutic benefit in respiratory inflammation is not due
exclusively to antieosinophil effects.
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