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SUMMARY
SARS-CoV-2 infection can cause severe respiratory COVID-19. However, many individuals present with iso-
lated upper respiratory symptoms, suggesting potential to constrain viral pathology to the nasopharynx.
Which cells SARS-CoV-2 primarily targets and how infection influences the respiratory epithelium remains
incompletely understood. We performed scRNA-seq on nasopharyngeal swabs from 58 healthy and
COVID-19 participants. During COVID-19, we observe expansion of secretory, loss of ciliated, and epithelial
cell repopulation via deuterosomal cell expansion. In mild and moderate COVID-19, epithelial cells express
anti-viral/interferon-responsive genes, while cells in severe COVID-19 have muted anti-viral responses
despite equivalent viral loads. SARS-CoV-2 RNA+ host-target cells are highly heterogenous, including devel-
oping ciliated, interferon-responsive ciliated,AZGP1high goblet, andKRT13+ ‘‘hillock’’-like cells, and we iden-
tify genes associated with susceptibility, resistance, or infection response. Our study defines protective and
detrimental responses to SARS-CoV-2, the direct viral targets of infection, and suggests that failed nasal
epithelial anti-viral immunity may underlie and precede severe COVID-19.
INTRODUCTION

The novel coronavirus SARS-CoV-2 emerged in late 2019 and

has led to one of themost devastating global pandemics in mod-

ern history. Similar to other successful respiratory viruses, high

replication within the nasopharynx (Pan et al., 2020; Sanche

et al., 2020) and viral shedding by asymptomatic or presymp-
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tomatic individuals contributes to enhanced transmissibility

(Fears et al., 2020; Meyerowitz et al., 2021) and rapid community

spread (Arons et al., 2020; Sakurai et al., 2020; Wang et al.,

2020c). COVID-19, the disease caused by SARS-CoV-2 infec-

tion, occurs in a fraction of those infected and can carry profound

morbidity and mortality. The clinical pictures of COVID-19 vary

widely—from a few mild symptoms to prolonged and severe
mber 2, 2021 ª 2021 The Authors. Published by Elsevier Inc. 4713
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disease characterized by pneumonia, acute respiratory distress

syndrome, and diverse systemic effects impacting various tis-

sues (Guan et al., 2020; Huang et al., 2020a). To facilitate effec-

tive prophylactics and therapeutics for COVID-19, differentiating

protective host mechanisms that support rapid viral clearance

and limit disease from those that drive severe and fatal outcomes

is essential.

SARS-CoV-2, like other respiratory coronaviruses, enters

through the mouth or nares and initially replicates within epithe-

lial cells of the human nasopharynx, generating an upper respira-

tory infection over several days (Frieman and Baric, 2008; Harri-

son et al., 2020). A subset of patients develop symptoms of lower

respiratory infection, where a combination of inflammatory im-

mune responses and direct viral-mediated pathogenesis can

lead to diffuse damage to distal airways, alveoli, and vasculature

(Ackermann et al., 2020; Borczuk et al., 2020). Reproducible

immune correlates of severe COVID-19 include prolonged

detection of proinflammatory cytokines such as IL-6, TNFa,

and IL-8, diminished type I and type III interferon, and marked

lymphopenia, as well as mixed evidence for immune exhaustion

and dysfunctional myeloid populations (Galani et al., 2021; Had-

jadj et al., 2020; Kusnadi et al., 2021; Liu et al., 2021; Lucas et al.,

2020; Mathew et al., 2020; Mudd et al., 2020; Schulte-Schrep-

ping et al., 2020; Stephenson et al., 2021; Su et al., 2020; Wilk

et al., 2020). Most reports have measured host responses in pe-

ripheral blood, which may only partially reflect immune status

within virally targeted tissues (Ren et al., 2021; Szabo et al.,

2020; Weisberg et al., 2021).

Central to understanding SARS-CoV-2-induced disease pa-

thology is identifying the direct cellular targets of infection within

human respiratory tissues. Multiple meta-analyses of single-cell

RNA-sequencing (scRNA-seq) datasets have nominated puta-

tive SARS-CoV-2 targets within the oropharyngeal, nasal, and

upper airway tissues, including subsets of ciliated, secretory,

and goblet cells, and within the lung parenchyma, type II pneu-

mocytes (Huang et al., 2020b; Lukassen et al., 2020; Muus

et al., 2020; Sungnak et al., 2020; Ziegler et al., 2020). A study

jointly collecting nasopharyngeal (NP) and bronchoalveolar

lavage (BAL) samples from a cohort of COVID-19 patients iden-

tified rare SARS-CoV-2 RNA-containing cells assigned to cili-

ated and secretory cell types (Chua et al., 2020). Further work us-

ing human tissues at autopsy found infected ciliated cells lining

the trachea and distal lung airways (Hou et al., 2020; Schaefer

et al., 2020; Zhu et al., 2020). However, the early targets for

SARS-CoV-2 in the nasopharynx, the scope of potential host

cells, and the variance in viral tropism across patients and dis-

ease courses have yet to be defined.

Compared to other common respiratory viruses, SARS-CoV-2

appears to elicit poor type I interferon (IFN) responses in cultured

human epithelial cells, and instead skews toward proinflamma-

tory cytokine profiles, in line with observations from human pe-

ripheral studies (Blanco-Melo et al., 2020; Galani et al., 2021;

Ravindra et al., 2021). Though animal models have offered crit-

ical insight into SARS-CoV-2 behavior in vivo, different models

vary widely in the severity of SARS-CoV-2-driven disease and

associated immunopathology, and incompletely reflect the di-

versity of viral infection outcomes and natural immune responses

in humans (Chandrashekar et al., 2020; Israelow et al., 2020;
4714 Cell 184, 4713–4733, September 2, 2021
Muñoz-Fontela et al., 2020; Speranza et al., 2021). Work

leveraging human cohorts has identified an enrichment for

both inborn errors of type I IFN signaling and the presence of au-

toantibodies against type I IFNs among patients with severe

COVID-19, providing potential explanations for failed or insuffi-

cient anti-viral immunity within a subset of severe cases, and

further supporting the need for human cohort studies that repre-

sent the breadth of host-viral interactions (Bastard et al., 2020,

2021; Combes et al., 2021; Wang et al., 2021a; van der Wijst

et al., 2021; Zhang et al., 2020).

Here, we present a comprehensive analysis of the cellular phe-

notypes in the nasal mucosa during early SARS-CoV-2 infection.

To achieve this, we developed tissue-handling protocols that

enabled high-quality scRNA-seq from frozen NP swabs

collected from a large patient cohort (n = 58) at the early stages

of clinical presentation, and created a detailed map of epithelial

and immune cell diversity. We found that SARS-CoV-2 infection

leads to a dramatic loss of mature ciliated cells, which is associ-

ated with secretory cell expansion, differentiation, and the

accumulation of deuterosomal cell intermediates—potentially

involved in the compensatory repopulation of damaged ciliated

epithelium. While we observe broad induction of IFN-responsive

and anti-viral genes in cells from individuals with mild or moder-

ate COVID-19, severe COVID-19 is characterized by a dramati-

cally blunted IFN response, andmucosal recruitment of highly in-

flammatory myeloid populations, which represent the primary

sources of tissue pro-inflammatory cytokines including TNF,

IL1B, and CXCL8. Further, using unbiased whole-transcriptomic

amplification, we map not only host cellular RNA, but also cell-

associated SARS-CoV-2 RNA, allowing us to trace viral tropism

to specific epithelial subsets and identify host pathways linked

with susceptibility or resistance to infection. Together, our data

suggest that an early failure of intrinsic anti-viral immunity among

nasal epithelial cells responding to SARS-CoV-2 infection may

underlie and predict progression to severe COVID-19.

RESULTS

Defining cellular diversity in the human nasopharyngeal
mucosa
NP swabs were collected from 58 individuals from the University

of Mississippi Medical Center (UMMC) between April and

September 2020. This cohort consisted of 35 individuals who

had a positive SARS-CoV-2 PCR NP swab on the day of hospital

presentation. A control group consisted of 15 individuals who

were asymptomatic and had a negative SARS-CoV-2 NP PCR,

6 intubated individuals in the intensive care unit without a recent

history of COVID-19 and negative SARS-CoV-2 NP PCR, and 2

additional individuals with recent history of COVID-19 and nega-

tive SARS-CoV-2 NP PCR, classified as ‘‘convalescent’’ (Table

1, Figures S1A–S1H, see STAR Methods for full inclusion and

exclusion criteria). Using the World Health Organization (WHO)

guidelines for stratification and classification of COVID-19

severity, we grouped individuals with COVID-19 based on the

maximum (‘‘peak’’) level of required respiratory support (World

Health Organization, 2020). NP samples were obtained by a

trained healthcare provider and rapidly cryopreserved to main-

tain cellular viability (Figures 1A and S1I). Swabswere processed



Table 1. Participant characteristics

Control (WHO

score 0)

Intubated control

(WHO score 7–8)

COVID-19 m/m

(WHO score 1–5)

COVID-19 severe

(WHO score 6–8)

COVID-19 conv.

(WHO score 0)

Case number 25.9% (15/58) 10.3% (6/58) 24.1% (14/58) 36.2 (21/58) 3.4% (2/58)

Age (years)

Minimum 27 33 19 28 20

Median (IQR) 58 (16) 65.5 (31) 49.5 (17.8) 62 (13) N/A

Maximum 73 71 69 84 57

Sex

Female 60% (9/15) 16.7% (1/6) 42.9% (6/14) 47.6% (10/21) 50% (1/2)

Male 40% (6/15) 83.3% (5/6) 57.1% (8/14) 52.4% (11/21) 50% (1/2)

Ethnicity

Hispanic 0% (0/15) 0% (0/6) 0% (0/14) 4.8% (1/21) 0% (0/2)

Not Hispanic 100% (15/15) 100% (6/6) 100% (14/14) 95.2% (20/21) 100% (2/2)

Race

Black/African

American

66.7% (10/15) 66.7% (4/6) 71.4% (10/14) 61.9% (13/21) 50% (1/2)

White 33.3% (5/15) 33.3% (2/6) 28.6% (4/14) 23.8% (5/21) 50% (1/2)

American Indian 0% (0/15) 0% (0/6) 0% (0/14) 14.3% (3/21) 0% (0/2)

BMI

Median (IQR) 37.5 (14.4) 30.5 (18.1) 23.0 (11.6) 31.9 (14.2) 40.7

Pre-existing conditions

Diabetes 40% (6/15) 33.3% (2/6) 28.6% (4/14) 71.4% (15/21) 0% (0/2)

Chronic kidney

disease

6.7% (1/15) 0% (0/6) 7.1% (1/14) 19.0% (4/21) 0% (0/2)

Congestive heart

failure

6.7% (1/15) 16.7% (1/6) 0% (0/14) 4.8% (1/21) 0% (0/2)

Lung disorder 6.7% (1/15) 16.7% (1/6) 28.6% (4/14) 38.1% (8/21) 0% (0/2)

Hypertension * 86.7% (13/15) 50% (3/6) 42.9% (6/14) 81.0% (17/21) 0% (0/2)

IBD 13.3% (2/15) 0% (0/6) 0% (0/14) 0% (0/21) 50% (1/2)

Treatment

Corticosteroids N/A 33.3% (2/6) 42.9% (6/14) 66.7% (14/21) N/A

Remdesivir N/A 0% (0/6) 14.3% (2/14) 4.8% (1/21) N/A

28-day

mortality ***

0% (0/15) 33.3% (2/6) 0% (0/14) 76.2% (16/21) 0% (0/2)

Continuous variables were compared by Kruskal-Wallis test. Categorical variables were compared by chi-square test. ***p < 0.001, *p < 0.05, other-

wise non-significant. m/m, mild/moderate; conv, convalescent; IQR, inter-quartile range; BMI, body mass index; IBD, inflammatory bowel disease.
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to recover single-cell suspensions (mean ± SEM: 57,000 ±

15,000 total cells recovered per swab), before generating sin-

gle-cell transcriptomes using Seq-Well S3 (Gierahn et al., 2017;

Hughes et al., 2019).

Among all COVID-19 and control samples, we recovered

32,871 genes across 32,588 cells (following filtering and quality

control) and annotated 18 clusters corresponding to distinct

cell types across immune and epithelial identities (Figures 1B–

1E and S1J–S1L, Table S1). We individually annotated clusters

based on several references (Deprez et al., 2020; Garcıá et al.,

2019; Ordovas-Montanes et al., 2018). Among epithelial cell

types, we identified basal cells by their expression of TP63,

KRT15, and KRT5, and mitotic basal cells using genes involved

in the cell cycle (MKI67, TOP2A) (Figure 1F). We resolved large

populations of secretory cells and goblet cells (KRT7, CXCL17,
F3, AQP5, CP); despite strong transcriptional similarity, we

distinguished between goblet and secretory cells based on

expression of MUC5AC-expressing goblet, and BPIFA1-ex-

pressing secretory cells. We also resolved a population of iono-

cytes (FOXI1, FOXI2, CFTR), a recently identified specialized

subtype of secretory cell involved in regulating mucus viscosity

within respiratory epithelia (Montoro et al., 2018; Plasschaert

et al., 2018). Squamous cells were identified by expression of

SCEL, as well as multiple SPRR genes, and potentially derive

from the squamous epithelium of the anterior nose or posterior

pharynx. Ciliated cells (FOXJ1 and a ciliogenesis gene program,

e.g., DLEC1, DNAH11, CFAP43) were the most numerous

epithelial cell type recovered. We also identified two populations

of precursor ciliated cells: one, termed ‘‘developing ciliated

cells,’’ expressed canonical ciliated cell genes such as FOXJ1,
Cell 184, 4713–4733, September 2, 2021 4715
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Figure 1. Cellular composition of human nasopharyngeal mucosa

(A) Schematic: viable cryopreservation of nasopharyngeal swabs, cellular isolation, and scRNA-seq using Seq-Well S3 (created with BioRender.com).

(B–E) UMAP of 32,588 cells from all participants, colored by cell type (following iterative Louvain clustering) (B), participant’s COVID-19 status by viral PCR (C),

peak level of respiratory support (WHO severity score) (D), and participant (E).

(F) Violin plots of cluster marker genes (FDR < 0.01) for coarse cell type annotations (as in B).

(G) Proportional abundance of coarse cell types by participant.

(H) Proportional abundance of participants by coarse cell types. Red, COVID-19; blue, control.

(I) Expression of entry factors for SARS-CoV-2 and other common upper respiratory viruses. Dot size represents fraction of cell type (rows) expressing a given

gene (columns). Dot hue represents scaled average expression by gene column.

(J–N) Proportion of ciliated cells (J), developing ciliated cells (K), deuterosomal cells (L), secretory cells (M), and goblet cells (N) by sample, separated by peak level

of respiratory support. Statistical test above graph represents Kruskal-Wallis test results across all groups (following FDR correction across cell types). Statistical

significance asterisks within box represent results from Dunn’s post hoc testing. *p < 0.05, **p < 0.01, ***p < 0.001.

(legend continued on next page)
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CAPSL, and PIFO at lower levels than mature ciliated cells and

lacked expression of cilia-forming genes; we also resolved deu-

terosomal cells (DEUP1, CCNO, CDC20B, FOXN4, HES6)—a

ciliated cell precursor arising from secretory cell/goblet cell dif-

ferentiation (Garcıá et al., 2019). Among lymphoid cells, we

recovered T cells (CD3E, CD2, TRBC2) and B cells (MS4A1,

CD79A, CD79B). Among myeloid cell types, we recovered a

large population of macrophages (CD14, FCGR3A, VCAN), den-

dritic cells (CCR7, CD86), and plasmacytoid DCs (IRF7, IL3RA).

Relative to true tissue-resident abundances, we under-recov-

ered granulocytes, likely due to the intrinsic fragility of these

cell types and the cryopreservation required in our sample pipe-

line (Figures S2A–S2G).We recovered a small population ofmast

cells (GATA2, TPSB2, PTGS2) (Dwyer et al., 2021). Each cell type

is represented by cells from numerous participants. From each

participant, we recovered a diversity of cell types and states,

though the cellular composition is highly variable between

distinct individuals (Figures 1G and 1H).

We interrogated each cell type for the expression of host fac-

tors utilized by common respiratory viruses to facilitate cellular

entry (Figure 1I; Hoffmann et al., 2020; Li et al., 2003; Sungnak

et al., 2020; Wang et al., 2020b; Wrapp et al., 2020; Yan et al.,

2020). We find ACE2 expression highest among secretory cells

and goblet cells, and to a lesser extent in ciliated cells, devel-

oping ciliated cells, deuterosomal cells, and squamous cells—

suggesting that these cells are likely targets for SARS-CoV-2

(and other betacoronaviruses that use ACE2 as their primary

cellular entry factor). SARS-CoV-2 spike protein requires ‘‘prim-

ing’’ by host proteases such as TMPRSS2, TMPRSS4, CTSL,

and FURIN for effective cell entry (Hoffmann et al., 2020).

TMPRSS2, likely the principal host factor for SARS-CoV-2 S

cleavage, is found in highest abundance in squamous cells, fol-

lowed by modest expression in all other epithelial cell types.

Similarly, CTSL (and other cathepsins) is found across diverse

epithelial and myeloid cell types.

To assess compositional differences by disease severity, we

grouped SARS-CoV-2-positive and SARS-CoV-2-negative par-

ticipants by their peak level of respiratory support according to

the WHO scoring system: control WHO 0 (comprising healthy

SARS-CoV-2 PCR-negative participants, n = 15), control WHO

7–8 (SARS-CoV-2 PCR-negative, intubated participants treated

in the ICU for non-COVID-19 diagnoses, n = 6), COVID-19 WHO

1–5 (SARS-CoV-2 PCR-positive, mild/moderate disease, n = 14),

and COVID-19 WHO 6–8 (SARS-CoV-2 PCR-positive, severe

disease, n = 21) (Figures 1J–1N). The abundance of ciliated cells

is significantly reduced among COVID-19 WHO 6–8 participants

compared to healthy controls (Figure 1J) and developing ciliated

cells are significantly increased (Figure 1K). Likewise, deuteroso-

mal cells are significantly increased among samples obtained

from control WHO 7–8, COVID-19 WHO 1–5, and COVID-19

WHO 6–8 samples (Figure 1L). The percentage of secretory cells

is also increased among all COVID-19 participants compared to

both the WHO 0 and WHO 7–8 control groups (Figure 1M). We

confirmed expansion of secretory cells during severe COVID-
(O) Simpson’s Diversity index (plotted as 1-D, increasing values represent higher d

Student’s t test. Lines represent mean ± SEM.

See also Figure S1, Table S1.
19 by flow cytometry in a separate cohort of control WHO

0 (n = 7) and COVID-19 WHO 6–8 (n = 7) participants (Figures

S2H and S2I; STAR Methods). Expansion of secretory cells

and loss of ciliated cells results in a net gain in epithelial diversity

(Figure 1O).

Epithelial diversity and remodeling after SARS-CoV-2
infection
Next, we sought to more completely delineate the diversity of

epithelial cells through iterative clustering and sub-clustering

(see STAR Methods, Figures 2A–2E and S2J, Table S1). We

examined epithelial subtypes for their expression of host entry

factors which facilitate viral entry among common upper respira-

tory pathogens (Figure S2K). Among goblet cells, AZGP1high

goblet cells express the highest abundance of ACE2 mRNA,

suggesting this cell type may be a preferential target for SARS-

CoV-2. Likewise, early response secretory cells, KRT24highKR-

T13high secretory cells, and interferon responsive secretory cells

all express elevated abundances of ACE2. To map the differen-

tiation and inter-relationships between epithelial cell types, we

applied single-cell RNA velocity (scVelo), which leverages RNA

splicing dynamics to infer developmental trajectories (STAR

Methods; Bergen et al., 2020; La Manno et al., 2018). Globally,

RNA velocity appropriately places basal cells and mitotic basal

cells as the ‘‘root’’ of cellular transitions, which then progresses

through developing secretory and goblet cells to secretory and

goblet cells. Developing ciliated cells and ciliated cells are

placed ‘‘later’’ in the differentiation trajectory, distal to develop-

ment of both secretory and deuterosomal cells, consistent with

current models where ciliated cells represent a terminally differ-

entiated state and may arise from these precursor cell types

(Garcıá et al., 2019). Together, this analysis enables us to map

the developmental relationships between major epithelial cell

compartments and connect the loss of ‘‘terminally differenti-

ated’’ or ‘‘mature’’ cell types in COVID-19, e.g., ciliated cells,

with the concurrent expansion of their precursors: secretory,

deuterosomal, and developing ciliated cells (Figure S2L).

We next analyzed developmental transitions among detailed

epithelial cell subtypes. When considering only basal, goblet,

and secretory cell subtypes, we found LGR5, TP63, EGFR, and

KRT5 expression gradually decline across basal and developing

secretory and goblet cells, while expression of secretory and

goblet cell-specific markers (KRT7, AQP5) progressively in-

crease (Figures 2F–2I). The majority of secretory and goblet

clusters are represented by cells from individuals with

positive SARS-CoV-2 PCRs, with significant expansion of SER-

PINB11high secretory cells (representing a ‘‘generic’’ or un-differ-

entiated secretory subtype), BPIFA1high secretory cells, and

KRT24highKRT13high secretory cells (which resemble KRT13+

‘‘hillock’’ cells) among cells from individuals with severe

COVID-19 (Figures 2J and S2M). RNA velocity curves predict

multiple routes for development between different secretory

and goblet subtypes (Figure 2F), suggestingmaintained capacity

for differentiation and de-differentiation even among ‘‘mature’’
iversity) across epithelial cell types in COVID-19 versus control. Significance by

Cell 184, 4713–4733, September 2, 2021 4717
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Figure 2. Altered epithelial cell composition in the nasopharynx during COVID-19

(A–D) UMAP of 28,948 cells colored by coarse cell types (A), participant’s COVID-19 status by viral PCR (B), peak level of respiratory support (WHO severity score)

(C), and detailed cell types (D). Arrows represent smoothed estimate of cellular differentiation trajectories inferred by RNA Velocity.

(E) Violin plots of marker genes for detailed epithelial cell types (as in D).

(F–H) UMAP of 9,209 basal, goblet, and secretory cells, following sub-clustering and colored by detailed cell types (F), participant’s COVID-19 status by viral PCR

(G), and inferred velocity pseudotime (darker blue shades: precursor cells, intense yellow shades: more terminally differentiated cell types) (H).

(I) Gene expression by basal, goblet, and secretory cell velocity pseudotime for select genes. Points colored by detailed cell type annotations.

(J) Proportion of secretory cell subtypes by sample, normalized to all epithelial cells. Statistical test above graph represents Kruskal-Wallis test results across all

groups (following FDR correction). Statistical significance asterisks within box represent results from Dunn’s post hoc testing. *p < 0.05, **p < 0.01, ***p < 0.001.

Lines represent mean and SEM.

(legend continued on next page)
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cell types, consistent with the current understanding of respira-

tory secretory cell plasticity (Tata et al., 2013).

Ciliated cell subtypes were also analyzed via RNA velocity and

pseudotemporal ordering (Figures 2K–2N). The velocity pseudo-

time predicts progression from developing ciliated cells to

FOXJ1high ciliated cells, to BEST4highciliahigh ciliated cells, and

terminating in ciliahigh ciliated cells (Figure 2M). IFN-responsive

ciliated cells and early response FOXJ1high ciliated cells repre-

sent phenotypic deviations from this ordered progression, and

therefore appear collapsed/unresolved along this trajectory

with the same pseudotime range as FOXJ1high ciliated cells.

Among COVID-19 participants, we observe decreased propor-

tions of both ciliahigh and BEST4highciliahigh ciliated cells, two

subsets which represent the most terminally differentiated cili-

ated cell subtypes (Figure 2O). This effect is particularly pro-

nounced among individuals with severe disease, suggesting

that the overall reduction in upper airway ciliated cells during

COVID-19 preferentially affects terminally differentiated subsets,

potentially due to delayed replenishing from secretory/deutero-

somal precursors or enhanced susceptibility to viral-mediated

pathogenesis. Among individuals with mild or moderate

COVID-19, we find an increase in the proportion of interferon-

responsive ciliated cells—averaging 15.9% of all epithelial cells

among mild and moderate COVID-19 participants—compared

to <1% among healthy controls.

Finally, we directly mapped the developmental transitions

among nasal epithelial cells within control (Figure 2P) or

COVID-19 participants only (Figure 2Q). Cells from control par-

ticipants poorly populated the intermediate regions that bridge

secretory and goblet cell types to mature ciliated cells (Yoshida

et al., 2021). Conversely, regions annotated asmultiple secretory

cell subsets and developing ciliated cells are uniquely captured

from COVID-19 participants. Together, our analysis defines the

diversity among cells collected from NP swabs, as well as the

nuanced developmental relationships between epithelial cells

of the upper airway.

Alterations to nasal mucosal immune populations in
COVID-19
As with epithelial cells, we further clustered and annotated

detailed immune cell populations (Figure S3, Table S1). Among

immune cells, macrophages markedly increase in abundance

during severe COVID-19 (Figures S3G and S3H). Multiple

specialized myeloid cell types are uniquely detected and en-

riched among COVID-19 participants, albeit in a subset of partic-

ipants, and biased to severe COVID-19 cases: ITGAXhigh macro-

phages, FFAR4high macrophages, inflammatory macrophages,

and IFN-responsive macrophages (Figure S3H). Rare plasmacy-

toid DCs and mast cells are recovered as >1% of immune cells

only among COVID-19 participants. Finally, we assessed the

correlation between distinct immune cell types across all partic-
(K–M) UMAP of 13,913 ciliated cells, following sub-clustering and colored by deta

velocity pseudotime (darker blue shades, precursor cells; intense yellow shades

(N) Gene expression by ciliated cell velocity pseudotime for select genes. Points

(O) Proportion of ciliated cell subtypes by sample, normalized to all epithelial cel

(P and Q) UMAP as in (A), separated by only control participants (P, 13,210 epith

See also Figure S2, Table S1.
ipants. The proportional abundance of dendritic cells, mast cells,

and macrophages are highly correlated with one another (p <

0.01), likely indicative of coordinated recruitment during inflam-

mation. IFN-responsive macrophages are correlated with IFN-

responsive cytotoxic CD8 T cells (p < 0.01, Figure S3I), suggest-

ing potential direct communication between IFNG-expressing

tissue-resident T cells and CXCL9/10/11-expressing myeloid

cells. Collectively, the epithelial and immune compartments are

dramatically altered during COVID-19, likely reflecting both pro-

tective anti-viral and regenerative responses, as well as patho-

logic changes underlying progression to severe disease.

Cell states associated with COVID-19 severity
Next, we examined how each cell type responds according to

different peak disease severity scores. We performed pairwise

differential expression (DE) tests between control WHO 0,

COVID-19 WHO 1–5, and COVID-19 WHO 6–8 groups (Tables

S2, S3, and S4). Among all coarse cell types, the largest tran-

scriptional changes (measured by the number of DE genes

with FDR < 0.001, and log fold change > 0.25) are observed

within the epithelial compartment, including ciliated cells, devel-

oping ciliated cells, secretory cells, goblet cells, and ionocytes

(Figure S4A). Among detailed cell types, we observed the

largest transcriptional changes among AZGP1high goblet cells,

early-response FOXJ1high ciliated cells, FOXJ1high ciliated cells,

MUC5AChigh goblet cells, SERPINB11high secretory cells,

early-response secretory cells, and IFN-responsive ciliated cells

(Figure 3A). When we directly compared mild or moderate to se-

vere COVID-19, we found that multiple cell types show robust

transcriptional changes, most drastically among ciliated cell

subtypes (IFN-responsive ciliated cells, FOXJ1high ciliated cells,

early-response FOXJ1high ciliated cells, developing ciliated

cells), ionocytes, SERPINB11high secretory cells, early-response

secretory cells, and AZGP1high goblet cells.

Compared to ciliated cells from control WHO 0 participants,

cells frombothmild/moderate andsevereCOVID-19upregulated

genes involved in the host response to virus, including IFI27,

IFIT1, IFI6, IFITM3, and GBP3, and both groups induce expres-

sion of MHC-I and MHC-II genes (HLA-A, HLA-C, HLA-F, HLA-

E, HLA-DRB1, HLA-DRA) and other factors involved in antigen

processing and presentation (Figures 3B and S4B). Large sets

of IFN-responsive and anti-viral genes are exclusively induced

among ciliated cells from COVID-19 WHO 1–5 participants

when compared to control WHO 0 participants. In a direct com-

parison of ciliated cells from mild or moderate to severe

COVID-19, the cells from individuals with mild or moderate dis-

ease show strong upregulation of diverse anti-viral factors,

including IFI44L, STAT1, IFITM1, MX1, IFITM3, OAS1, OAS2,

OAS3, STAT2, TAP1, HLA-C, ADAR, XAF1, IRF1, CTSS, CTSB,

and many others. Ciliated cells from severe COVID-19 uniquely

upregulate IL5RA and NLRP1. Together, these DE gene sets
iled cell types (K), participant’s COVID-19 status by viral PCR (L), and inferred

, more terminally differentiated cell types) (M).

colored by detailed cell type annotations.

ls.

elial cells) or COVID-19 participants (Q, 15,738 epithelial cells).
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suggest exposure to secreted inflammatory factors and type I/II/

III IFNs, as well as direct cellular sensing of viral products. Using

previously published data from human nasal basal cells treated

in vitro with either type I (IFNa) or type II (IFNg) IFNs (Ziegler

et al., 2020), we created gene sets that represent the ‘‘shared’’

gene responses to type I and type II IFNs, and the cellular re-

sponses specific to either type (Figure 3B). Usinggene set enrich-

ment analysis (GSEA), we tested whether the genes that discrim-

inate ciliated cells from different groups (e.g., mild or moderate

versus severe COVID-19) imply exposure to specific IFN types.

We found that ciliated cells in mild or moderate COVID-19

robustly induce type I IFN-specific gene signatures, both

compared to cells from healthy controls as well as from severe

COVID-19. Further, when compared to cells from healthy individ-

uals, ciliated cells from individuals with severe COVID-19 did not

significantly induce type I or type II IFN-responsive genes, poten-

tially underlying poor control of viral spread.

We next investigated whether these effects were observed

among other cell types and subsets. Surprisingly, even among

cells defined as ‘‘IFN-responsive’’ ciliated cells, cells from mild

or moderate COVID-19 participants express higher fold changes

of IFN-responsive genes compared to cells from severe COVID-

19 participants or healthy controls (Figures 3C and 3D). Other

epithelial and immune cell types display a similar pattern: broad

IFN-responsive genes (largely type I specific) are strongly upre-

gulated among cells from mild or moderate COVID-19 partici-

pants, while cells from severe COVID-19 participants upregulate

few shared markers with mild or moderate COVID-19 partici-

pants, and instead skew toward inflammatory genes (S100A8,

S100A9) (Figures 3E–3H, S3J–S3L, and 4C). In some cases, cells

from individuals with severe COVID-19 express levels of IFN-

responsive or anti-viral genes indistinguishable from healthy

controls. Further, the absence of a transcriptional response to

secreted IFN cannot be explained by a lack of either IFNa-recep-
Figure 3. Cell-type-specific and shared transcriptional responses duri

(A) Abundance of significantly DE genes by detailed cell types between disease g

tested, too few cells.

(B) Top: volcano plots of average log fold change (FC) versus -log10(FDR-adjust

Horizontal red dashed line: FDR-adjusted p value = 0.05. Bottom: GSEA plots acr

genes. Genes ranked by their average log FC between each comparison. Black lin

Bar height represents running enrichment score (NES, normalized enrichment sco

(C) Heatmap of significantly DE genes between interferon responsive ciliated cells

following log(1+UMI per 10K) normalization.

(D) Top: Volcano plots related to C for interferon-responsive ciliated cells. Horizo

shared, type I, and type II interferon-stimulated genes.

(E) Heatmap of significantly DE genes betweenMUC5AChigh goblet cells fromdiffe

log(1+UMI per 10K) normalization.

(F) Top: Volcano plots related to (E) for MUC5AChigh goblet cells. Horizontal red d

type I, and type II interferon-stimulated genes.

(G) Top: Dot plot of IFNGR1, IFNGR2, IFNAR1, and IFNAR2 gene. Bottom: Violin p

and COVID-19 WHO 6–8 (pink). Significance by Wilcoxon signed-rank test. p va

(H) Common DE genes across detailed cell types. Left (red): COVID-19 WHO 1–5 v

(I) Relative abundances of IgG autoantibodies for human type I, II, and III interferon

control WHO 0, n = 5; red circles, COVID-19 WHO 1–5, n = 12; pink squares, CO

interferons from a single donor:,COVID-19 participant 27 (peak WHO severity sc

(J) Average expression of STAT1, STAT2, IRF1, and IRF9 among ciliated cells

determined by participants’ peakWHO severity score. Statistical testing by Kruska

*p < 0.05, **p < 0.01, ***p < 0.001. Right: participants in COVID-19 WHO 6–8 gro

Wilcoxon signed-rank test, n.s. non-significant, p > 0.05.

See also Figures S3 and S4, Tables S2, S3, and S4.
tor (IFNAR1, IFNAR2) or IFNg-receptor (IFNGR1, IFNGR2)

expression. Previous work has identified ACE2 as among the

IFN-induced genes in nasal epithelial cells, with uncertain signif-

icance for SARS-CoV-2 infection (Blume et al., 2021; Ng et al.,

2020; Onabajo et al., 2020; Ziegler et al., 2020). Indeed, we

find modest upregulation of this gene among cells from

COVID-19 participants compared to healthy controls. Further,

some of the cell subtypes identified as expanded during

COVID-19 (e.g., IFN-responsive ciliated cells, BPIFA1high secre-

tory cells, BPIFA1highchemokinehigh secretory cells, and

KRT24highKRT13high secretory cells) express relatively high

abundances of ACE2 (Figure S4D).

A proportion of COVID-19 participants in our study were

concurrently treated with corticosteroids, which mediate broad

anti-inflammatory and immunosuppressive effects. For some

genes, corticosteroid treatment is associated with a partially

suppressed IFN response within each group—for instance, cili-

ated cells from untreated COVID-19 WHO 1–5 participants

show higher abundances of IFITM1, OAS2, IFI6, and IFI27 than

their corticosteroid-treated counterparts—while still maintaining

strong differences in expression between severity groups (Fig-

ures S4E and S4F). Interestingly, induction of FKBP5 expression

among ciliated cells from severe COVID-19 participants is fully

explained by corticosteroid treatment, consistent with the role

for this protein in modulating glucocorticoid receptor activity.

The majority of anti-viral genes were not impacted by corticoste-

roid treatment, including STAT1, STAT2, IFI44, and ISG15 (Liu

et al., 2021). Together, these data demonstrate global blunting

of the anti-viral/IFN response among nasopharyngeal epithelial

cells during severe COVID-19.

We next attempted to query the source of local IFN. Many tis-

sue-resident immune cells reside principally within the deeper

lamina propria and submucosal spaces, and are therefore, as

expected, poorly represented in our dataset due to our sampling
ng COVID-19

roups. FDR-corrected p < 0.001, log2 fold change > 0.25. ø = comparison not

ed p value) for ciliated cells (all, coarse annotation) between disease groups.

oss shared, type I interferon-specific, and type II interferon-specific stimulated

es represent the ranked location of genes belonging to the annotated gene set.

re). p values following Bonferroni-correction: *p < 0.05, **p < 0.01, ***p < 0.001.

from different disease groups. Row(gene)-scaled digital gene expression (DGE)

ntal red dashed line: FDR-adjusted p value = 0.05. Bottom: GSEA plots across

rent disease groups. Row(gene)-scaled digital gene expression (DGE) following

ashed line: FDR-adjusted p value = 0.05. Bottom: GSEA plots across shared,

lots of module scores, split by control WHO 0 (blue), COVID-19 WHO 1–5 (red),

lues following Bonferroni-correction: *p < 0.05, **p < 0.01, ***p < 0.001.

ersus control WHO 0. Right (pink), COVID-19WHO 6–8 versus control WHO 0.

s via multiplexed human antigen microarray (see STARMethods). Blue circles,

VID-19 WHO 6–8, n = 8. Large pink squares, autoantibodies against 12 type I

ore: 8, swab WHO severity score: 5).

by participant. For each gene: left: participants separated by disease group,

l-Wallis test across disease groups (**p = 0.0018) with Dunn’s post hoc testing:

up, separated by level of severity at time of nasal swab. Statistical testing by
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Figure 4. Co-detection of human and SARS-CoV-2 RNA

(A) Metatranscriptomic classification of all scRNA-seq reads using Kraken2 (STAR Methods). Results shown from selected respiratory viruses (threshold >

5 reads).

(B) Normalized abundance of SARS-CoV-2 aligning UMI from all scRNA-seq reads (including those derived from ambient cell barcodes). p < 0.0001 by Kruskal-

Wallis test. Pairwise comparisons using Dunn’s post hoc testing. **p < 0.01, ***p < 0.001.

(C) SARS-CoV-2 UMIs per high-complexity single-cell transcriptome (following correction for ambient viral reads).

(D) Proportional abundance of secretory cells (all, coarse annotation) versus total SARS-CoV-2 UMIs (normalized to M total UMIs).

(E) Proportional abundance of FOXJ1high ciliated cells versus total SARS-CoV-2 UMIs (normalized to M total UMIs).

(F) Schematic: SARS-CoV-2 genome and subgenomic RNA species.

(G) Schematic: SARS-CoV-2 genomic features annotated in the custom reference genome.

(H) Heatmap of SARS-CoV-2 gene expression among SARS-CoV-2 RNA+ single cells (following correction for ambient viral reads). Disease group color bar: red,

COVID-19 WHO 1–5; pink, COVID-19WHO 6–8; black, COVID-19 convalescent; blue, control WHO 0. Top heatmap: SARS-CoV-2 genes and regions organized

from 50 to 30. Bottom heatmap: alignment to 70-mer regions directly surrounding viral TRS sites.

See also Figures S5 and S6.
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strategy (swabbing of surface epithelial cells) (Deprez et al.,

2020; Ordovas-Montanes et al., 2018). Accordingly, we find

few immune cell types producing IFNs: IFNA and IFNB are ab-

sent, rare IFNL1 reads are observed among T cells and macro-

phages, and IFNG is robustly produced from IFN-responsive

cytotoxic CD8 T cells (Figure S4G). We could not detect expres-

sion of any IFN types among epithelial cells, which differs
4722 Cell 184, 4713–4733, September 2, 2021
dramatically from previous observations of robust type I/III IFN

expression among nasal ciliated cells during influenza A and B

infection (also captured via Seq-Well S3; Cao et al., 2020) (Fig-

ure S4H). Rather, we observe robust induction of other inflam-

matory molecules from immune and epithelial cell types.

CXCL8 is produced by several specialized secretory cell types,

including those uniquely expanded in COVID-19. Inflammatory
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macrophages and IFN-responsive macrophages represent the

primary sources of local TNF, IL6, and IL10, and uniquely ex-

press high abundances of chemoattractant molecules such as

CCL3, CCL2, and CXCL8. Interestingly, IFN-responsive macro-

phages appear to be a principal source of CXCL9, CXCL10,

and CXCL11 (Figure S4G).

We directly tested whether the lack of an IFN-stimulated

response among nasal epithelial cells in severe COVID-19 partic-

ipants could be explained by autoantibody-mediated inhibition

of secreted interferons as reported in other cohorts (Bastard

et al., 2020, 2021; Wang et al., 2021a). Using matched plasma

collected at the time of NP swab, we analyzed a subset of 25 par-

ticipants for IgG and IgM antibodies targeting a large panel of po-

tential antigens (using a microarray-based antibody hybridiza-

tion platform; see STAR Methods). Here we found evidence for

IgG autoantibodies targeting IFN-u and 11 IFNa subtypes in 1/

8 participants who developed severe COVID-19, 0/12 partici-

pants with mild or moderate disease, and 0/5 healthy donors

(Figure 3I). We caution against generalizing this result due to

our limited cohort size; we note, however, that our findings agree

well with the expected proportion (�10%) of severe individuals

with autoantibodies to IFN components from published data

(Bastard et al., 2020).

To better understand participant-to-participant variability in

anti-viral and IFN-responsive gene signatures, we analyzed the

average expression of STAT1, STAT2, IRF1, and IRF9—key tran-

scription factors responsible for the induction of IFN-stimulated

gene expression and IFN-induced genes themselves—among

ciliated cells from each participant (Figure 3J). We found that

the expression ofSTAT1,STAT2, and IRF1was indistinguishable

among cells from control WHO 0, control WHO 7–8, and COVID-

19 WHO 6–8 participants. IRF9 was diminished among COVID-

19 WHO 6–8 participants and control WHO 7–8 participants

compared to healthy donors and participants with mild or mod-

erate COVID-19. Intriguingly, despite the absence of autoanti-

bodies directed at type I interferons, nearly all participants who

developed severe COVID-19 failed to induce STAT1, STAT2,

IRF1, and IRF9 expression (among other IFN-stimulated genes).

Even individuals who hadmilder disease and limited requirement

for respiratory support at the time of nasal swab, but later went

on to develop severe or fatal COVID-19 (swab WHO 1–5, peak

WHO 6–8), already had diminished STAT1 expression at the

time of nasal swab (Figure 3J). This suggests a potential predic-

tive value of poor interferon-stimulated gene (ISG) induction.

Co-detection of viral and host RNA and correlates of
nasal viral load
We next tested whether the observed epithelial and immune

phenotypes were associated with altered local viral abundance.

To perform an unbiased search for co-detected viral, bacterial,

and fungal genomic material, we used metatranscriptomic clas-

sification to assign reads according to a comprehensive refer-

ence database (previously described, see STAR Methods, Le-

mieux et al., 2021; Wood et al., 2019). As expected, the

majority (28/38) of swabs from individuals with COVID-19

contain reads classified as SARS coronavirus species (Figures

4A and S5A–S5C). Among samples containing SARS coronavi-

rus genomic material, the read abundance ranged from 2e0 to
8.8e6 reads (1.8e�3 to 1.9e4 reads/million [M] total reads). We

found little evidence for co-occurring respiratory viruses.

Next, we analyzed all SARS-CoV-2-aligned unique molecular

identifiers (UMIs) following alignment to a joint genome contain-

ing both human and SARS-CoV-2 (Kim et al., 2020). We took the

sum of all SARS-CoV-2 aligning UMIs from a given participant—

both associated with high-complexity single-cell transcriptomes

and ambient RNA—as a representative measure of the total

SARS-CoV-2 burden within the tissue microenvironment. As

observed using metatranscriptomic classification, we found

relatively low/spurious alignments to SARS-CoV-2 among con-

trol participants, while swabs from COVID-19 participants con-

tained a wide range of SARS-CoV-2 reads (Figures 4B, 4C,

S5D, and S5E). SARS-CoV-2 UMIs were detected in 80% (28/

35) of COVID-19 participants. Samples from participants who

developed severe COVID-19 contained significantly higher

abundances of SARS-CoV-2 aligning UMIs than both control

groups, with an average of 1.1e2 ± 2.8e0 (geometric mean ±

SEM) UMIs per million (M) aligned UMIs (ranging from 0 to

1.5e5 per sample); swabs from participants with mild or moder-

ate COVID-19 contained slightly fewer SARS-CoV-2 aligning

UMIs, with an average of 1.1e1 ± 4.3e0 UMIs per M. Among all

cell types, we observe that secretory cells are significantly posi-

tively correlated with the total viral abundance (Spearman’s rho =

0.49, Bonferroni-corrected p = 0.0015), while FOXJ1high ciliated

cells are negatively correlated (Spearman’s rho =�0.43, Bonfer-

roni-corrected p = 0.020, Figures 4D and 4E). We binned the

samples from COVID-19 participants into ‘‘viral low’’ and ‘‘viral

high’’ groupings (based on an arbitrary cutoff of 1e3 SARS-

CoV-2UMIs perM; robust to a range of partition choices, Figures

S5E and S5F). IFN-responsive ciliated cells are expanded

among ‘‘viral high’’ COVID-19 samples, and plasmacytoid DCs

are only found in ‘‘viral low’’ samples. Finally, in a subset of pa-

tients for whom we obtained matched plasma samples on the

same day of NP swab (n = 36), we observe SARS-CoV-2 UMI

abundance is inversely correlated with the SARS-CoV-2 IgM

and IgG titers (Figure S5G). As severe COVID-19 has been

shown to correlate with higher antibody titers, this suggests

that several individuals in our cohort are sampled early in their

disease trajectory, though we note there is substantial

complexity in interpreting how antibody levels align with the

timing of infection, viral load, and ISGs (Garcia-Beltran et al.,

2021; Long et al., 2020; Zohar et al., 2020).

Cellular targets of SARS-CoV-2 infection in the
nasopharynx
Next, we aimed to differentiate SARS-CoV-2 UMIs derived from

ambient or low-complexity cell barcodes from those likely re-

flecting intracellular RNA molecules within high-complexity sin-

gle-cell transcriptomes (Cao et al., 2020; Delorey et al., 2021;

Fleming et al., 2019; Kotliar et al., 2020). We filtered to viral

UMIs associated with cells presented in Figure 1, removing

those associated with low-complexity or ambient-only cell

barcodes (Figure S5H). Next, we estimated the proportion of

ambient RNA contamination per single cell and the abundance

of SARS-CoV-2 RNA within the extracellular/ambient environ-

ment (i.e., not cell-associated) per sample. Using these parame-

ters, we tested whether the amount of viral RNA associated with
Cell 184, 4713–4733, September 2, 2021 4723
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a given single-cell transcriptome was significantly higher than

expected from ambient spillover. This enabled us to identify

cell barcodes whose SARS-CoV-2-aligning UMIs were likely

driven by spurious contamination, and annotate single cells

that contain probable cell-associated or intracellular SARS-

CoV-2 RNA (Figures 4C and S5H). Across all single cells, we

recover 415 high-confidence SARS-CoV-2 RNA+ cells across

21 participants, which we confirmed is not driven by technical

factors (Figure S5I). 262 SARS-CoV-2 RNA+ cells are frompartic-

ipants who developed severe COVID-19 and 150 from mild or

moderate COVID-19. We detect three SARS-CoV-2 RNA+ cells

from participants with negative SARS-CoV-2 PCR: two from a

participant identified as ‘‘COVID-19 convalescent,’’ and one

from a control participant. Among participants with any SARS-

CoV-2 RNA+ cells, we detect 20 ± 7 (mean ± SEM) SARS-CoV-

2 RNA+ cells per sample (range 1–119), amounting to 4% ±

1.3% (range 0.1%–24%) of the total recovered cells per sample

(Figure S5J). Within a given single cell, the abundance of SARS-

CoV-2 UMIs ranges from 1 to 12,612, corresponding to 0.01%–

98% of all human and viral UMIs per cell.

To further understand the biological significance of SARS-

CoV-2-aligning UMIs within a single cell, and to better identify

cells with the highest likelihood of actively supporting viral repli-

cation, we analyzed the specific viral sequences and their align-

ment regions in the viral genome (Figures 4F, 4G, and S6A; Fung

and Liu, 2019; Hu et al., 2021; Kim et al., 2020). Single cells con-

taining higher abundances of spliced transcriptional regulatory

sequences (TRSs) or negative strand aligning reads are more

likely to represent truly virally infected cells with a functional viral

replication and transcription complex. We integrate these and

other aspects of the host and viral transcriptomes to refine and

contextualize our confidence in ‘‘SARS-CoV-2 RNA+’’ cells. Crit-

ically, the co-detection of host transcriptomic and viral genomic

material associated with a single cell barcode cannot definitively

establish the presence of intracellular virus and/or productive

infection. The majority of SARS-CoV-2-aligning UMIs among

SARS-CoV-2 RNA+ cells are found heavily biased toward the

30 end of the genome, attributed to the 30 UTR, ORF10, and N

gene regions, as expected due to poly(A) priming (Figure 4H).

A majority (68.7%) of SARS-CoV-2 RNA+ cells contain reads

aligning to the viral negative strand, increasing the likelihood

that many of these cells represent true targets of SARS-CoV-2

virions in vivo. In addition to negative strand alignment, we find

roughly �1/4 of the SARS-CoV-2 RNA+ cells contain at least

100 UMIs that map to more than 20 distinct viral genomic loca-

tions per cell. When comparing spliced to unspliced UMIs, we

find a minor fraction of cells with reads mapping directly across

a spliced TRS sequence (4.6%), while 35% of SARS-CoV-2

RNA+ cells contain reads mapping across the equivalent 70-

mer window around an unspliced TRS.

Next, we integrated (1) the strand and splice information

among SARS-CoV-2-aligning UMIs, (2) participant-to-partici-

pant diversity, and (3) cell type annotations to gain a comprehen-

sive picture of the identity and range of SARS-CoV-2 RNA+ cells

within the nasopharyngeal mucosa (Figures 5A–5D and S6A–

S6E). The majority of SARS-CoV-2 RNA+ cells are ciliated,

goblet, secretory, or squamous. Highest-confidence SARS-

CoV-2 RNA+ cells (containing UMIs aligning across a spliced
4724 Cell 184, 4713–4733, September 2, 2021
TRS, negative-strand UMIs, and >100 SARS-CoV-2 UMIs/cell)

tended to be found among MUC5AChigh goblet cells, AZGP1high

goblet cells, BPIFA1high secretory cells, KRT24highKRT13high

secretory cells, CCL5high squamous cells, developing ciliated

cells, and each ciliated cell subtype. A high proportion of IFN-

responsive macrophages contained SARS-CoV-2 genomic ma-

terial, and rare ITGAXhigh macrophages are found to contain

UMIs aligning to viral negative strand or spliced TRS regions—

likely representing myeloid cells that have recently engulfed vir-

ally infected epithelial cells or free virions. We did not find major

differences in the presumptive cellular tropism by peak COVID-

19 severity. The cell types harboring the highest proportions of

SARS-CoV-2 RNA+ cells represent the same cell types uniquely

expanded or induced within COVID-19 participants, such as

KRT24highKRT13high secretory cells, AZGP1high goblet cells,

and IFN-responsive ciliated cells, and contain the highest abun-

dances ofACE2-expressing cells (Figure 5E). Developing ciliated

cells contain among the highest SARS-CoV-2 RNA molecules

per cell, including positive strand, negative strand-aligning

reads, and spliced TRS reads (Figure S6F). Among ciliated cell

subtypes, IFN-responsive ciliated cells, despite representing

one of the most frequent ‘‘targets’’ of viral infection, contain

the lowest per-cell abundances of SARS-CoV-2 RNA, potentially

reflecting the impact of elevated anti-viral factors curbing high

levels of intracellular viral replication (Figure S6G).

Cell-intrinsic responses to SARS-CoV-2 infection
We next mapped both the cell-intrinsic response to direct viral

infection as well as the host cell identities that may potentiate

or enable SARS-CoV-2 tropism and replication. To control for

variability among different SARS-CoV-2 RNA+ cell types and in-

dividuals, we compared SARS-CoV-2 RNA+ cells to bystander

cells of the same cell type and participant (Figures 6A). Many

of the genes previously identified as increased within all cells

from COVID-19 participants, e.g., anti-viral factors IFITM3,

MX1, IFI44L, and IRF1, are upregulated among SARS-CoV-2

RNA+ cells compared to matched bystanders. The majority of

genes inducedwithin SARS-CoV-2 RNA+ cells are shared across

diverse cell types, suggesting a conserved anti-viral response

and common features that facilitate or restrict infection (Figures

6B–6D, Table S5). SARS-CoV-2 RNA+ cells expressed signifi-

cantly higher abundances of multiple proteases involved in the

cleavage of SARS-CoV-2 spike protein, a required step for viral

entry (TMPRSS4, TMPRSS2, CTSS, CTSD). This suggests that

within a given cell type, natural variations in the abundance of

genes which support the viral life cycle may partially account

for which cells are successfully targeted by the virus.

Among the core anti-viral/IFN-responsive gene sets induced

within SARS-CoV-2 RNA+ cells, we observed repeated and

robust upregulation of IFITM3 and IFITM1. Multiple studies

have demonstrated that while these two IFN-inducible factors

can disrupt viral release from endocytic compartments among

a wide diversity of viral species, IFITMs can instead facilitate en-

try by human betacoronaviruses (Fung and Liu, 2019; Zhao et al.,

2014). Therefore, enrichment of these factors within presumptive

infected cells may reflect viral hijacking of a conserved host anti-

viral responsive pathway. Genes involved in cholesterol and lipid

biosynthesis are also upregulated among SARS-CoV-2 RNA+
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Figure 5. Cellular targets of SARS-CoV-2 in the nasopharynx

(A) Summary schematic of top SARS-CoV-2 RNA+ cells. (Adapted from ‘‘Coronavirus Replication Cycle (Simplified) by BioRender.com (2021). Retrieved from

https://app.biorender.com/biorender-templates.)

(B) SARS-CoV-2 RNA+ cell number (top) and percent (bottom) per participant.

(C) Abundance of SARS-CoV-2 RNA+ cells by detailed cell type, bars colored by participant.

(D) Dot plot of SARS-CoV-2 RNA presence by sample (columns) and detailed cell types (rows). Dot size reflects fraction of a given participant and cell type

containing SARS-CoV-2 RNA. Dot color reflects fraction of aligned reads corresponding to the SARS-CoV-2-positive strand (yellow) versus negative strand

(black). Top dot plot across columns: alignment of viral reads by participant, separated by RNA species type. Right dot plot across rows: alignment of viral reads

by detailed cell type.

(E) Percent ACE2+ cells versus percent SARS-CoV-2 RNA+ cells by coarse cell type (left) and detailed cell type (right).

See also Figures S5 and S6.
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cells, including FDFT1, MVK, FDPS, ACAT2, and HMGCS1, all

enzymes involved in the mevalonate synthesis pathway. In addi-

tion, SARS-CoV-2 RNA+ cells show increased abundance of

low-density lipoprotein receptors LDLR and LRP8 compared to

matched bystanders. Various genes involved in cholesterol

metabolism were recently identified as critical host factors for
SARS-CoV-2 replication via CRISPR screens, and additional

hits from these datasets are similarly enriched among SARS-

CoV-2 RNA+ cells in our study (Figure S7A; Daniloski et al.,

2021; Schneider et al., 2021; Wang et al., 2021b; Wei et al.,

2021). We found increased expression of S100/Calbindin genes

such as S100A6, S100A4, and S100A9 among SARS-CoV-2
Cell 184, 4713–4733, September 2, 2021 4725
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Figure 6. Intrinsic and bystander responses to SARS-CoV-2 infection

(A) Violin plots of selected genes upregulated in SARS-CoV-2 RNA+ cells in at least three individual cell type comparisons. Blue, control participants; red,

bystander cells from COVID-19 participants; dark red, SARS-CoV-2 RNA+ cells.

(B) Enriched gene ontologies among genes consistently up- or downregulated among SARS-CoV-2 RNA+ cells across cell types.

(C and D) Heatmap of genes consistently higher in SARS-CoV-2 RNA+ cells (C) and higher in bystander cells (D) across multiple cell types. Colors represent log

fold changes between SARS-CoV-2 RNA+ cells and bystander cells. Yellow, upregulated among SARS-CoV-2 RNA+ cells; blue, bystander cells.

(E) Top: Violin plots of SARS-CoV-2 aligning reads among SARS-CoV-2 RNA+ cells. Statistical significance by Wilcoxon rank sum test. Bottom: select differ-

entially expressed genes between SARS-CoV-2 RNA+ cells from participants with mild or moderate COVID-19 (red) versus severe COVID-19 (pink). Statistical

significance by likelihood ratio test assuming an underlying negative binomial distribution. *** FDR-corrected p < 0.001, **p < 0.01, *p < 0.05.

(F) Percent ACE2+ cells versus percent SARS-CoV-2 RNA+ cells by detailed cell type. Left: cells from participants with mild or moderate COVID-19. Right: cells

from participants with severe COVID-19. Point size reflects average type I interferon-specific module score among SARS-CoV-2 RNA+ cells.

See also Figure S7 and Table S5.
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RNA+ cells, which may directly play a role in leukocyte recruit-

ment to infected cells. Finally, we found multiple genes impli-

cated in susceptibility and response to SARS-CoV-2 infection

which have not been previously described. IFNAR1 was sub-

stantially increased in many bystander cells compared to both

cells from control participants as well as matched SARS-CoV-

2 RNA+ cells (Figure 6D). Blunting of IFNa signaling via downre-

gulation of IFNAR1 within SARS-CoV-2 RNA+ cells may partially

explain high levels of viral replication compared to neighboring

cells. Finally, bystander cells expressed significantly higher

abundances of MHC-II molecules compared to SARS-CoV-2

RNA+ cells, including HLA-DQB1, HLA-DRB1, HLA-DRB5,

HLA-DRA, and CD74.

Anti-viral factors were largely absent from presumptive virally

infected cells in participants who developed severe COVID-19,

despite equivalent abundances of cell-associated viral UMIs

and elevated UMIs/cell aligning to the viral negative strand (Fig-

ures 6E and S7B). EIF2AK2,which encodes protein kinase R and

drives host cell apoptosis following recognition of intracellular

double-stranded RNA, is among the most reliably expressed

and upregulated genes among SARS-CoV-2 RNA+ cells

compared to matched bystanders across diverse cell types,

suggesting rapid activation of this gene following intrinsic

PAMP recognition of SARS-CoV-2 replication intermediates

(Krähling et al., 2009). Neither EIF2AK2 nor IFN-responsive tran-

scription factors such as STAT1 and STAT2 were expressed

within SARS-CoV-2 RNA+ cells from participants who developed

severe COVID-19 (Figure 6E). This suggests that direct sensing

of intracellular viral products may amplify IFN-responsive and

anti-viral gene upregulation, though these pathways are only

induced among SARS-CoV-2 RNA+ cells from participants with

mild or moderate COVID-19 (Figure 6F). Together, this suggests

a failure of the intrinsic immune response to viral infection among

nasal epithelial cells in individuals who develop severe

COVID-19.

DISCUSSION

We present a comprehensive map of SARS-CoV-2 infection of

the human nasopharynx using scRNA-seq. We hypothesize

that the host response at the site of initial infection, the nasal mu-

cosa, is an essential determinant of overall COVID-19 disease

trajectory. By dissecting the nature of host-pathogen interac-

tions at this primary viral target across the spectrum of disease

trajectories, we characterize both protective and pathogenic re-

sponses to SARS-CoV-2 infection. This enables us to begin to

untangle the myriad factors that may restrict viral infection to

the upper respiratory tract or support the development of severe

lower respiratory tract disease (Figure S7C). Our study defines

major compositional differences in the nasal epithelia during

COVID-19 and directly relates these to NP viral load, cellular

tropism, and cell-intrinsic responses to SARS-CoV-2. Further,

we identify marked variability in the induction of anti-viral gene

expression that is associated with peak disease severity and

may precede development of severe respiratory damage. We

find that anti-viral gene expression is profoundly blunted in cells

isolated from individuals who develop severe disease, even in

cells containing SARS-CoV-2 RNA.
Individuals who develop severe COVID-19 have equivalent or

even elevated levels of nasal SARS-CoV-2 RNA at the time of

sampling and contained expanded inflammatory and type II-

IFN-responsive macrophages compared to mild or moderate

cases. Indeed, published peripheral immune studies comparing

mild and severe COVID-19 also observe diminished type I and

type III IFN abundances in severe cases and note restricted

IFN-stimulated gene expression among circulating immune cells

(Galani et al., 2021; Hadjadj et al., 2020; Stephenson et al., 2021).

Other human betacoronaviruses (MERS and SARS-CoV) exhibit

multiple strategies to avoid triggering pattern recognition recep-

tor pathways, including degradation of host mRNA within in-

fected cells (Kamitani et al., 2009; Lokugamage et al., 2015),

sequestration of viral replication intermediates (e.g., double

stranded RNA) from host sensors (Knoops et al., 2008), and

direct inhibition of immune effector molecules (Fung and Liu,

2019; Krähling et al., 2009; Menachery et al., 2014), leading to

diminished induction of anti-viral pathways and blunted auto-

crine and paracrine IFN signaling. Strategies to avoid innate im-

mune recognition have now been extended to SARS-CoV-2 as

well, indicating that avoiding host recognition is likely an essen-

tial aspect of viral success (Banerjee et al., 2020; Konno et al.,

2020; Snijder et al., 2020). The close association we observe be-

tween peak disease severity andweak anti-viral gene expression

among nasal epithelial cells is intriguing given recent observa-

tions of inborn defects in TLR3, IRF7, IRF9, and IFNAR1, or anti-

body-mediated neutralization of type I IFN responses within indi-

viduals who develop severe COVID-19 (Bastard et al., 2020,

2021; Combes et al., 2021; Wang et al., 2021a; Zhang et al.,

2020). Taken together, these findings suggest that severe infec-

tion arises in the setting of impaired intrinsic epithelial anti-viral

immunity, even in the absence of detectable type I IFN-targeting

autoantibodies. We surmise that the combined effects of a viral

strain with naturally poor IFN induction and defects in immune

or intrinsic epithelial anti-viral responses within the nasal mucosa

may predispose to severe disease via enhanced viral replication

in the upper airway, eventually leading to immunopathology

characteristic of severe COVID-19.

Among individuals who develop severe COVID-19 in our

cohort, we observe unique recruitment of highly inflammatory

macrophages that represent the major tissue sources of proin-

flammatory cytokines including IL1B, TNF, CXCL8, CCL2,

CCL3, andCXCL9/10/11—of likely relation to the immune dysre-

gulation characterized by elevation of the same factors in the pe-

riphery in severe disease and observed in lung tissue among

those who succumbed to COVID-19 (Delorey et al., 2021; Lucas

et al., 2020). In addition, we note specific upregulation of alar-

mins S100A8/S100A9 (i.e., calprotectin) among epithelial cells

in the severe COVID-19 group compared to mild or moderate

and control counterparts, and even higher expression of

S100A9within SARS-CoV-2 RNA+ cells from those same individ-

uals. A recent study identified these as potential biomarkers of

severe COVID-19 and proposed that these factors directly drive

excessive inflammation and precede the massive cytokine

release characteristic of late disease (Silvin et al., 2020). Our

work suggests that severe COVID-19-specific expression of cal-

protectin may originate within the virally infected nasal epithelia.

Further work to understand the epithelial cell regulation of
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S100A8/A9 gene expression may help clarify maladaptive re-

sponses to SARS-CoV-2 infection.

Finally, we provide a direct investigation into the host factors

that enable or restrict SARS-CoV-2 replication within epithelial

cells in vivo. We recapitulate expected ‘‘hits’’ based on well-

described host factors involved in viral replication—e.g.,

TMPRSS2 and TMPRSS4 enrichment among presumptive virally

infected cells. In accordance with previous studies into the nasal

epithelial response to influenza infection (Cao et al., 2020), we

observe bystander epithelial cell upregulation of both MHC-I

and MHC-II family genes; however, we find that SARS-CoV-2

RNA+ cells only express MHC-I, and poorly express MHC-II

genes compared to matched bystanders. To our knowledge,

downregulation of host cell pathways for antigen presentation

by coronaviruses has not been previously described. A recent

study found that CIITA and CD74 can intrinsically block entry

of a range of viruses (including SARS-CoV-2) via endosomal

sequestration, and therefore cells that upregulate these (and

other) components of MHC-II machinery may naturally restrict

viral entry (Bruchez et al., 2020).

Together, our work and that of our colleagues suggest that

several mechanisms that restrict interferon-mediated viral con-

trol in the upper respiratory epithelium can enable progression

to severe COVID-19, that these causes may be multifactorial

and rooted in human diversity, and yet they converge on

impaired intrinsic immunity to SARS-CoV-2 in nasal epithelial

cells. Further, it suggests that there may be a clinical window

in which severe disease can be subverted by focusing preventa-

tive or therapeutic interventions early within the nasopharynx

(Feld et al., 2020; Hoagland et al., 2021; Monk et al., 2021;

Wang et al., 2020a), bolstering anti-viral responses and curbing

pathological inflammatory signaling prior to development of se-

vere respiratory dysfunction or systemic disease.

Limitations of the study
A major difficulty in understanding SARS-CoV-2 infection in vivo

at early, disease-relevant time points lies in limited strategies for

sampling the upper airway cellular makeup. We collected viable

cells using NP swabs—a minimally invasive clinical procedure

that we were able to apply in both an ambulatory setting and

the intensive care unit at the height of the summer 2020

COVID-19 surge in Mississippi. The simplicity of this procedure,

in comparison to BAL or biopsy-based measurements, repre-

sents a major advantage. However, our pipeline, as imple-

mented, has key limitations arising from viably freezing the NP

swabs (e.g., cell loss, limited cell recovery). We have confirmed

that freezing cells directly on a NP swab does not induce major

differences in the recovered cell composition of the nasal mu-

cosa among healthy donors, but we cannot exclude alterations

specific to individuals with COVID-19. Consequently, with limited

cellular capture per swab, we potentially under-sample features

of the nasal epithelium, which impacts our ability to detect and

compare low-abundance cell subtypes—such as rare immune

cells with <0.5% frequency in the nasal epithelium (e.g., mast

cells, plasmacytoid DCs). Further, though we are able to recover

SARS-CoV-2 aligning reads in more than 80% of COVID-19 par-

ticipants, we recovered few cells per participant that can be as-

signed as ‘‘SARS-CoV-2 RNA’’ with high confidence. Accord-
4728 Cell 184, 4713–4733, September 2, 2021
ingly, we detect remarkably high heterogeneity in SARS-CoV-

2-targeted cell subtypes across individuals, which may be due

to incomplete recovery of the full distribution of SARS-CoV-2-

targeted cells in any single donor. Finally, our data represent

the population served by the University of Mississippi Medical

Center, and further work will be required to understand how

these data relate to the general population. Multiple cohorts

replicated by distinct research groups across clinical centers

and patient populations will be critical to understand the gener-

alizability of our findings.
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Antibodies

PerCP-Cy5.5-conjugated anti-human

CD45 (clone: HI30)

BioLegend Cat# 304027; RRID: AB_1236444

Brilliant Violet 711-conjugated anti-human

CD3 (clone: SK7)

BioLegend Cat# 344837; RRID: AB_2565826

APC-Cy7-conjugated anti-human CD8

(clone: SK1)

BioLegend Cat# 344714; RRID: AB_2044006

PE-conjugated anti-human CD4 (clone:

RPA-T4)

BioLegend Cat# 300508; RRID: AB_314076

Brilliant Violet 786-conjugated anti-human

CD326 (clone: 9C4)

BioLegend Cat# 324237; RRID: AB_2632936

PE-Cy5-conjugated anti-human CD19

(clone: HIB19)

BioLegend Cat# 302209; RRID: AB_314239

PE-Cy7-conjugated anti-human CD66b

(clone: G10F5)

BioLegend Cat# 305115; RRID: AB_2566604

Brilliant Violet 650-conjugated anti-human

CD11c (clone: Bu15)

BioLegend Cat# 337237; RRID: AB_2721551

FITC-conjugated anti-human CD14

(clone: M5E2)

BioLegend Cat# 301804; RRID: AB_314186

Brilliant Violet 421-conjugated anti-human

CD56 (clone: 5.1H11)

BioLegend Cat# 362551; RRID: AB_2566060

PE-Cy7-conjugated anti-human CD49f

(clone: GoH3)

Biolegend Cat# 313621; RRID: AB_2561704

PE-conjugated anti-human CD66c (clone:

B6.2/CD66)

BD Cat# 551478; RRID: AB_394216

APC-Cy7-conjugated anti-human CD271

(clone: ME20.4)

Biolegend Cat# 345125; RRID: AB_2876654

FITC-conjugated Tubulin-alpha

(clone: 10D8)

Biolegend Cat# 627905; RRID: AB_893643

Biological Samples

Human nasopharyngeal swabs University of Mississippi Medical Center IRB#2020-0065

Human plasma University of Mississippi Medical Center IRB#2020-0065

Chemicals, Peptides, and Recombinant Proteins

2-Mercaptoethanol Sigma Cat# M3148-25ML

RLT Buffer QIAGEN Cat# 79216

dNTP New England BioLabs Cat# N0447L

RNase Inhibitor Fisher Scientific Cat# AM2696

Maxima RNaseH-minus RT Enzyme Fisher Scientific Cat# EP0753

AMPure RNAClean XP RNA-SPRI beads Beckman Coulter Cat# A63987

AMPure XP SPRI beads Beckman Coulter Cat# A63881

Guanidinium thiocyanate Sigma Cat# AM9422

Sarkosyl Sigma Cat# L7414

Exonuclease I New England BioLabs Cat# M0293S

Klenow Fragment New England BioLabs Cat #M0212L

Accutase Sigma Cat# A6964
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Dithiothreitol (DTT) Sigma Cat# 43816

Critical Commercial Assays

Nextera XT DNA Library Preparation Kit Illumina Cat# FC-131-1096

NextSeq 500/550 High Output v2 (75

cycles)

Illumina Cat# FC-404-2005

Kapa HiFi HotStart ReadyMix Kapa Biosystems Cat# KK2602

MACOSKO-2011-10 mRNA Capture Beads ChemGenes Cat# NC0927472

High Sensitivity D5000 ScreenTape Agilent Cat# 5067-5592

Qubit dsDNA High-Sensitivity kit ThermoFisher Cat# Q32854

AbC Total Antibody Compensation Beads Life Technologies Cat# A10497

ArC Amine Reactive Compensation Beads Life Technologies Cat# A10346

Human TruStain FcXTM (Fc receptor

blocking solution)

BioLegend Cat# 422302

BD Fixation Buffer BD Biosciences Cat# 554655

Fixable Aqua Dead Cell Stain ThermoFisher Cat# L34965

OmicsArray Antigen Microarrays GeneCopoeia Cat# PA012

Deposited Data

Processed and raw data, scRNA-seq of all

cells from nasopharyngeal swabs

This paper Single Cell Portal: https://singlecell.

broadinstitute.org/single_cell/study/

SCP1289

Custom SARS-CoV-2 FASTA and GTF This paper Github: https://github.com/ShalekLab/

SARSCoV2-genome-reference

Human reference genome NCBI build 38

(GRCh38)

Genome Reference Consortium GEO: https://www.ncbi.nlm.nih.gov/

projects/genome/assembly/grc/human/

SARS-CoV-2 Genome Reference Kim et al., 2020 Github: https://github.com/hyeshik/

sars-cov-2-transcriptome

Population RNA-seq data, human

basal cells

Ziegler et al., 2020 Single Cell Portal: https://singlecell.

broadinstitute.org/single_cell/study/

SCP822

Oligonucleotides

Seq-Well ISPCR: AAG CAG TGG TAT CAA

CGC AGA GT

Integrated DNA Technologies N/A

Custom Read 1 Primer: GCC TGT CCG

CGG AAG CAG TGG TAT CAA CGC AGA

GTA C

Integrated DNA Technologies N/A

Seq-Well 5’ TSO: AAG CAG TGG TAT CAA

CGC AGA GTG AAT rGrGrG

Integrated DNA Technologies N/A

Seq-Well Custom P5-SMART PCR hybrid

oligo: AAT GAT ACG GCG ACC ACC GAG

ATC TAC ACG CCT GTC CGC GGA AGC

AGT GGT ATC AAC GCA GAG TAC

Integrated DNA Technologies N/A

Seq-Well dN-SMRT oligo: AAG CAG TGG

TAT CAA CGC AGA GTG ANN NGG NNN B

Integrated DNA Technologies N/A

Software and Algorithms

R Project for Statistical Computing 4.0.2 R Core Team https://www.r-project.org

R package – Seurat v3.2.2 Github https://github.com/satijalab/seurat

R package – DESeq2 v1.30.0 Bioconductor https://bioconductor.org/packages/

DESeq2/

R package – Circlize v0.4.11 CRAN https://CRAN.R-project.org/

package=circlize
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REAGENT or RESOURCE SOURCE IDENTIFIER

R package – ggplot2 v3.3.2 CRAN https://CRAN.R-project.org/

package=ggplot2

R package – ComplexHeatmap v2.7.3 Bioconductor https://bioconductor.org/packages/

ComplexHeatmap/

R package – fgsea v1.16.0 Bioconductor https://bioconductor.org/packages/fgsea/

Python Programming Language v3.8.3 Python https://www.python.org

Python package scVelo v0.3.0 Bergen et al., 2020 https://scvelo.readthedocs.io/

CellBender Fleming et al., 2019 https://cellbender.readthedocs.io/

Cumulus Li et al., 2020 https://cumulus.readthedocs.io/

Prism 6 GraphPad Software https://www.graphpad.com/

scientific-software/prism/

STAR Github https://github.com/alexdobin/STAR

FlowJo v10.7.1 TreeStar Inc. N/A
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Dr. Jose

Ordovas-Montanes (jose.ordovas-montanes@childrens.harvard.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
d Single-cell RNA-seq data is publicly available for download and visualization via the Single Cell Portal: https://singlecell.

broadinstitute.org/single_cell/study/SCP1289/. This paper also analyzes existing, publicly available data. Accession numbers

and links are listed in the key resources table. Interim data was also deposited in a single-cell data resource for COVID-19

studies: https://www.covid19cellatlas.org (Ballestar et al., 2020). Custom reference FASTA and GTF for SARS-CoV-2 is avail-

able for download: https://github.com/ShalekLab/SARSCoV2-genome-reference. Additional Supplemental Items are available

from Mendeley Data at https://doi.org/10.17632/pjr7b8sbf8.1.

d All original code has been deposited at GitHub (https://github.com/ShalekLab) and is publicly available as of the date of

publication.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Eligible participants were recruited from outpatient clinics, medical surgical units, intensive care units (ICU), or endoscopy units at the

University of Mississippi Medical Center (UMMC) between April 2020 and September 2020. The UMMC Institutional Review Board

approved the study under IRB#2020-0065. All participants or their legally authorized representative provided written informed con-

sent. Participants were eligible for inclusion in the COVID-19 group if they were at least 18 years old, had a positive nasopharyngeal

swab for SARS-CoV-2 by PCR, had COVID-19 related symptoms including fever, chills, cough, shortness of breath, and sore throat,

andweighedmore than 110 lb. Participants were eligible for theControl group if theywere at least 18 years old, had a current negative

SARS-CoV-2 test (PCR or rapid antigen test), and weighed more than 110 lb. Participants were considered ‘‘Convalescent’’ if they

met the criteria of the Control group, however had previously tested SARS-CoV-2 PCR positive and diagnosed with COVID-19, and

their symptoms had subsided for at least 40 days. Convalescent samples were treated as an independent group, and excluded from

comparisons between ‘‘Control’’ and ‘‘COVID-19’’ groups. Exclusion criteria for the cohort included a history of blood transfusion

within 4 weeks and subjects who could not be assigned a definitive COVID-19 diagnosis from nucleic acid testing. 35 individuals

with COVID-19 were included, both male (n = 19) and female (n = 16). For the Control group, 21 participants were included – 11 iden-

tified as male, 10 as female. The median age of COVID-19 participants was 55 years old; the median age of Control participants was

62 years old. Among hospitalized COVID-19 participants, the median day NP swabs were collected was hospital day 2 (inter-quartile
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range: 1, range 1-9). COVID-19 participants were classified according to the 8-level ordinal scale proposed by theWHO representing

their peak clinical severity and level of respiratory support required (World Health Organization, 2020) (Table 1, Figures S1A–S1E).

Notably, for many participants the peak severity differed from their clinical severity score on the day of nasopharyngeal swab (Figures

S1F, S1G). We confirmed that basic health and demographic information including: age, sex, BMI, race/ethnicity, and presence of

co-morbidities was balanced across disease groups (assessed using Chi-square test for categorial variables and Kruskal-Wallis test

for continuous metrics, all comparisons non-significant, p > 0.05, Figures S1C–S1E, S7C, Table 1). We additionally performed a cor-

relation analysis among each of our clinical features to understand the relationships among distinct clinical pictures (e.g., severity

score), laboratory findings (e.g., CRP), and demographic information (e.g., age), and how these relate to our major findings (e.g.,

secretory cell proportion, viral load, ISG induction, Figure S7C).

METHOD DETAILS

Sample Collection and Biobanking
Nasopharyngeal samples were collected by a trained healthcare provider using FLOQSwabs (Copan flocked swabs) following the

manufacturer’s instructions. Collectors would don personal protective equipment (PPE), including a gown, non-sterile gloves, a pro-

tective N95 mask, a bouffant, and a face shield. The patient’s head was tilted back slightly, and the swab inserted along the nasal

septum, above the floor of the nasal passage to the nasopharynx until slight resistance was felt. The swab was then left in place

for several seconds to absorb secretions and slowly removed while rotating swab. The swab was then placed into a cryogenic

vial with 900 mL of heat inactivated fetal bovine serum (FBS) and 100 mL of dimethyl sulfoxide (DMSO). Vials were placed into a

Mr. Frosty Freezing Container (Thermo Fisher Scientific) for optimal cell preservation. A Mr. Frosty containing the vials was placed

in a cooler with dry ice for transportation from patient areas to the laboratory for processing. Once in the laboratory, the Mr. Frosty

was placed into a �80�C freezer overnight, and on the next day, the vials were moved to liquid nitrogen storage containers.

Dissociation and Collection of Viable Single Cells from Nasopharyngeal Swabs
Swabs in freezingmedia (90%FBS/10%DMSO) were stored in liquid nitrogen until immediately prior to dissociation. A detailed sam-

ple protocol can be found here: https://protocols.io/view/human-nasopharyngeal-swab-processing-for-viable-si-bjhkkj4w.html.

(Tang et al., 2020). This approach (Figure S1I) ensures that all cells and cellular material from the nasal swab (whether directly

attached to the nasal swab, or released during the washing and digestion process), are exposed first to DTT for 15 min, followed

by an Accutase digestion for 30 min. Briefly, nasal swabs in freezing media were thawed, and each swab was rinsed in RPMI before

incubation in 1 mL RPMI/10mMDTT (Sigma) for 15 min at 37�Cwith agitation. Next, the nasal swab was incubated in 1mL Accutase

(Sigma) for 30 min at 37�C with agitation. The 1 mL RPMI/10 mM DTT from the nasal swab incubation was centrifuged at 400 g for

5 min at 4�C to pellet cells, the supernatant was discarded, and the cell pellet was resuspended in 1 mL Accutase and incubated for

30 min at 37�Cwith agitation. The original cryovial containing the freezing media and the original swab washings were combined and

centrifuged at 400 g for 5min at 4�C. The cell pellet was then resuspended in RPMI/10mMDTT, and incubated for 15min at 37�Cwith

agitation, centrifuged as above, the supernatant was aspirated, and the cell pellet was resuspended in 1mLAccutase, and incubated

for 30 min at 37�C with agitation. All cells were combined following Accutase digestion and filtered using a 70 mm nylon strainer. The

filter and swab were washed with RPMI/10% FBS/4 mM EDTA, and all washings combined. Dissociated, filtered cells were centri-

fuged at 400 g for 10min at 4�C, and resuspended in 200 mL RPMI/10% FBS for counting. Cells were diluted to 20,000 cells in 200 mL

for scRNA-seq. For the majority of swabs, fewer than 20,000 cells total were recovered. In these instances, all cells were input into

scRNA-seq.

We directly tested whether cell types collected from NP swabs following cryopreservation were representative of the cellular

composition extracted from a freshly-swabbed nasopharyngeal epithelium, or if certain cell types were lost during freezing (Fig-

ure S2B-S2G). Recovery of viable cells, technical metrics of single-cell library quality, and cellular proportions after clustering and

analysis were all largely stable between matched fresh and cryopreserved swabs taken from the same individual. Importantly, no

‘‘new’’ cell types (from healthy participants) were recovered from the freshly processed samples.

Flow Cytometry of Cells Isolated from Nasopharyngeal Swabs
Single-cell suspensions were isolated from nasopharyngeal swabs of healthy donors, as described above. Cells were first stained

with Fixable Aqua Dead Cell Stain (Thermo Fisher Scientific) for 15 min to assess viability. Cells were washed with staining buffer

(PBS/2% FBS), and then treated with Human TruStain FcX (Fc receptor blocking solution, Cat. No. 422302, BioLegend) for 5 min.

For quantification of immune cell subtypes: cells were stained with a surface marker antibody cocktail on ice for 15 min, which con-

tained PerCP-Cy5.5-conjugated anti-human CD45 (clone: HI30, BioLegend), Brilliant Violet 711-conjugated anti-human CD3 (clone:

SK7, BioLegend), APC-Cy7-conjugated anti-human CD8 (clone: SK1, BioLegend), PE-conjugated anti-human CD4 (clone: RPA-T4,

BioLegend), Brilliant Violet 786-conjugated anti-human CD326 (clone: 9C4, BioLegend), PE-Cy5-conjugated anti-human CD19

(clone: HIB19, BioLegend), PE-Cy7-conjugated anti-human CD66b (clone: G10F5, BioLegend), Brilliant Violet 650-conjugated

anti-human CD11c (clone: Bu15, BioLegend), FITC-conjugated anti-human CD14 (clone: M5E2, BioLegend), and Brilliant Violet

421-conjugated anti-humanCD56 (clone: 5.1H11, BioLegend). For quantification of epithelial subsets: cells were stainedwith an anti-

body cocktail containing PerCP-Cy5.5-conjugated anti-human CD45 (clone: HI30, BioLegend), PE-Cy7-conjugated anti-human
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CD49f (clone: GoH3, BioLegend), PE-conjugated anti-human CD66c (clone: B6.2/CD66, BD), APC-Cy6-conjugated anti-human

CD271 (clone: ME20.4, Biolegend), and FITC-conjugated tubulin alpha (clone: 10D8, Biolegend) (Bonser et al., 2021). Finally, cells

were fixed using BD Fixation Buffer (Cat. No. 554655, BD Biosciences). AbC Total Antibody Compensation Beads (Cat. No.

A10497, Life Technologies) and ArC Amine Reactive Compensation Beads (Cat. No. A10346, Life Technologies) were used for

compensation. Data were acquired on an LSRFortessa flow cytometer (BD Biosciences) using BD FACSDiva software, and analyzed

by FlowJo software (Version 10.7.1, Tree Star Inc.).

Detection of Autoantibodies Binding Human Interferons
Plasma from a subset of 25 participants (5 healthy controls, 12 mild/moderate COVID-19, 8 severe COVID-19) was collected on the

same day as nasopharyngeal swab. Autoantibodies were assessed using a commercial microarray-based platform (GeneCopoeia).

Briefly, participant plasma was hybridized to distinct microarray spots containing 120 native human and viral antigens spotted onto

nitrocellulose fibers (adhered to glass slides). Next, the slides were incubated with fluorescently-coupled anti-IgG or anti-IgM sec-

ondary antibodies, and microarrays were scanned using a GenePix 4400A microarray scanner. Raw fluorescence data was normal-

ized to PBS controls on each slide.

Single Cell RNA-Sequencing
Seq-Well S3 was run as previously described (Aicher et al., 2019; Gierahn et al., 2017; Hughes et al., 2019). Briefly, a maximum of

20,000 single cells were deposited onto Seq-Well arrays preloaded with a single barcoded mRNA capture bead (ChemGenes)

per well (Macosko et al., 2015). cells were allowed to settle by gravity into wells for 10 min, after which the arrays were washed

with PBS and RPMI, and sealed with a semi-permeable membrane for 30 min, and incubated in lysis buffer (5 M guanidinium thio-

cyanate/1 mM EDTA/1% BME/0.5% sarkosyl) for 20 min. Arrays were then incubated in a hybridization buffer (2M NaCl/8% v/v

PEG8000) for 40 min, and then the beads were removed from the arrays and collected in 1.5 mL tubes in wash buffer (2M NaCl/

3 mM MgCl2/20 mM Tris-HCl/8% v/v PEG8000). Beads were resuspended in a reverse transcription master mix, and reverse tran-

scription, exonuclease digestion, second-strand synthesis, and whole transcriptome amplification were carried out as previously

described. Libraries were generated using Illumina Nextera XT Library Prep Kits and sequenced on NextSeq 500/550 High Output

75 cycle v2.5 kits to an average depth of 180 million aligned reads per array: read 1: 21 (cell barcode, UMI), read 2: 50 (digital gene

expression), index 1: 8 (N700 barcode).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data Preprocessing and Quality Control
Pooled libraries were demultiplexed using bcl2fastq (v2.17.1.14) with default settings (mask_short_adapter_reads 10, minimum_-

trimmed_read_length 10, implemented using Cumulus, snapshot 4, https://cumulus.readthedocs.io/en/stable/bcl2fastq.html) (Li

et al., 2020). Libraries were aligned using STAR within the Drop-Seq Computational Protocol (https://github.com/broadinstitute/

Drop-seq) and implemented on Cumulus (https://cumulus.readthedocs.io/en/latest/drop_seq.html, snapshot 9, default parameters)

(Macosko et al., 2015). A custom reference was created by combining human GRCh38 (from CellRanger version 3.0.0, Ensembl 93)

and SARS-CoV-2 RNA genomes. The SARS-CoV-2 viral sequence and GTF are as described in Kim et al., 2020 (https://github.com/

hyeshik/sars-cov-2-transcriptome, BetaCov/South Korea/KCDC03/2020 based on NC_045512.2) (Kim et al., 2020). The GTF in-

cludes all CDS regions (as of this annotation of the transcriptome, the CDS regions completely cover the RNA genome without over-

lapping segments), and regions were added to describe the 50 UTR (‘‘SARSCoV2_5prime’’), the 30 UTR (‘‘SARSCoV2_3prime’’), and

reads aligning to anywherewithin theNegative Strand (‘‘SARSCoV2_NegStrand’’). Trailing A’s at the 30 end of the viruswere excluded

from the SARS-CoV-2 FASTA, as thesewere found to drive spurious viral alignment in pre-COVID19 samples. Finally, additional small

sequences were appended to the FASTA and GTF that differentiate reads that align to the 70-nucleotide region around the viral TRS

sequence – either across the intact, unspliced genomic sequences (e.g., named ‘‘SARSCoV2_Unspliced_S’’ or ‘‘SARSCoV2_Uns-

pliced_Leader’’) or various spliced RNA species (e.g., ‘‘SARSCoV2_Spliced_Leader_TRS_S’’), see schematics in Figures 4F, 4G, Fig-

ures S6A. Alignment references were tested against a diverse set of pre-COVID-19 samples and in vitro SARS-CoV-2 infected human

bronchial epithelial cultures (Ravindra et al., 2020) to confirm specificity of viral aligning reads. Aligned cell-by-gene matrices were

merged across all study participants, and cells were filtered to eliminate barcodes with fewer than 200 UMI, 150 unique genes, and

greater than 50%mitochondrial reads. Swabs from 58 individuals are included in the study. Three additional swabs were thawed and

processed but contained no high-quality cell barcodes after sequencing (NB: these samples contained < 5,000 viable cells prior to

Seq-Well array loading).This resulted in a final dataset of 32,871 genes and 32,588 cells across 58 study participants (35 SARS-CoV-

2+, 23 SARS-CoV-2-). Preprocessing, alignment, and data filtering was applied equivalently to samples from the fresh versus frozen

cohort. For analysis of RNA velocity, we also recovered both exonic and intronic alignment information using DropEst (Cumulus

(https://cumulus.readthedocs.io/en/latest/drop_seq.html, snapshot 9, dropest_velocyto true, run_dropest true) (Petukhov

et al., 2018).
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Cell Clustering and Annotation
Dimensionality reduction, cell clustering, and differential gene analysis were all achieved using the Seurat (v3.1.5) package in R pro-

gramming language (v3.0.2) (Stuart et al., 2019). Dimensionality reduction was carried out by running principal components analysis

(PCA) over the 3,483most variable genes with dispersion > 0.8 (tested over a range of dispersion > 0.7 to dispersion > 1.2; dispersion

> 0.8 was determined as optimal based on number of variable genes, and general stability of clustering results across these cutoffs

was confirmed). Only variable genes from human transcripts were considered for dimensionality reduction and clustering. Using the

Jackstraw function within Seurat, we selected the first 36 principal components that described the majority of variance within the

dataset, and used these for defining a nearest neighbor graph and UniformManifold Approximation and Projection (UMAP) plot. Cells

were clustered using Louvain clustering, and the resolution parameter was chosen by maximizing the average silhouette score

across all clusters. Differentially expressed genes between each cluster and all other cells were calculated using a likelihood ratio

test, implemented with Seurat’s FindAllMarkers function, test.use set to ‘‘bimod’’ (McDavid et al., 2013). Clusters were merged if

they failed to contain > 25 significantly differentially expressed genes (FDR < 0.001). We proceeded iteratively through each cluster

and subcluster until ‘‘terminal’’ cell subsets/cell stateswere identified –we defined ‘‘terminal’’ cell stateswhen PCA and Louvain clus-

tering did not confidently identify additional sub-states, as measured by abundance of differentially expressed genes between po-

tential clusters (often > 25 cluster-specific marker genes with FDR < 0.001). Among two samples, we recovered erythroblast-like

cells, defined by expression of hemoglobin subunits includingHBB and HBA2 (these were from swabs noted to be slightly red-tinged

on day of processing). For visualization in Figure 2, we pooled all cells determined to be of epithelial origin from coarse-grained anno-

tation (ciliated cells, secretory cells, goblet cells, basal cells, mitotic basal cells, developing secretory and goblet cells, developing

ciliated cells, squamous cells, deuterosomal cells, and ionocytes) and used the methods for dimensionality reduction as above

(dispersion cutoff > 1, 30 principal components). We applied similar approaches for immune cell types (Figure S3), including iterative

subclustering to resolve and annotate all constituent cells types and subtypes. Gene module scores were calculated using the Add-

ModuleScore function within Seurat.

Seven major epithelial types were recovered from this dataset, annotated according to prior knowledge of the composition and

developmental relationships between cells of the upper airway and nasal mucosa (Deprez et al., 2020; Rao Tata and Rajagopal,

2017). Basal cells represent the main stem/progenitor cells of the nasal epithelium, and are classically defined by TP63, KRT5,

and KRT15 expression (Rock et al., 2009). Goblet cells generate the contents of mucus via secretion of mucin proteins (e.g., MU-

C5AC, MUC5B), which play a critical role in lubricating the respiratory epithelium and trapping inhaled particles and pathogens.

Secretory cells are a distinct exocrine cell of the nasal epithelium, and are distinguished from goblet cells by the absence of mucin

production and preferential expression of antimicrobial molecules (e.g., BPIFA1) (Bingle and Craven, 2002). We designated a small

population of cells ‘‘developing secretory and goblet cells’’ based on their lower expression of classic secretory/goblet cell genes, as

well as persistent expression of some basal cell markers (e.g., persistentCOL7A1 andDST expression, but diminishingKRT5,KRT15

expression). A specialized subtype of secretory/club cell, ionocytes, were recently discovered in lung tissue, and regulate mucus vis-

cosity and are the major expressors of CFTR (mutations in the CFTR gene underlie the disease cystic fibrosis) (Montoro et al., 2018;

Plasschaert et al., 2018). Ciliated cells are the most numerous cell type of the upper respiratory epithelium, whose hair-like cilia move

mucus and debris out of the respiratory tract. Deuterosomal cells are another recently discovered respiratory cell type, and are hy-

pothesized to represent an intermediate cell state as secretory/goblet cells trans-differentiate into ciliated cells. Deuterosomes are

cellular structures that produce the numerous centrioles required to nucleate multi-ciliated structures on ciliated cells; the genes to

produce deuterosomes are upregulated within deuterosomal cells, such as DEUP1 and CCNO (Garcıá et al., 2019; Revinski et al.,

2018). Finally, squamous cells of the nasopharyngeal mucosa are flat cells that form barrier structures of the oropharyngeal and ante-

rior nasal mucosa.

Among some cell types, we did not find additional within-type diversity, and thus the ‘‘coarse’’ annotations (Figure 2A) are equiv-

alent to the ‘‘detailed’’ identities (Figure 2D). We annotated epithelial subtypes according to the following groups and representative

markers: goblet cells were split into 4 distinct sets: MUC5AChigh goblet cells, which lacked additional specialized markers beyond

classic goblet cell identifiers, SCGB1A1high goblet cells, AZGP1high goblet cells, and AZGP1highSCGB3A1highLTFhigh goblet cells.

Secretory cells were divided into 6 distinct detailed subtypes: SERPINB11high secretory cells (which, similar to MUC5AChigh goblet

cells, represented a more ‘‘generic’’ or un-differentiated secretory cell phenotype), BPIFA1high secretory cells, early response secre-

tory cells (which expressed genes such as JUN, EGR1, FOS, NR4A1), KRT24highKRT13high secretory cells (which are similar to pre-

viously-described KRT13+ ‘‘hillock’’ cells (Deprez et al., 2020; Montoro et al., 2018)), BPIFA1highchemokinehigh secretory cells (che-

mokines include CXCL8, CXCL2, CXCL1, and CXCL3), and interferon responsive secretory cells (defined by higher expression of

broad anti-viral genes including IFITM3, IFI6, and MX1). Subsets of squamous cells were also found – detailed squamous cell sub-

types include CCL5high squamous cells, VEGFAhigh squamous cells (which express multiple vascular endothelial genes including

VEGFA and VWF), SPRR2Dhigh squamous cells (which, in addition to SPRR2D, express the highest abundances of multiple

SPRR- genes including SPRR2A, SPRR1B, SPRR2E, and SPRR3), and HOPXhigh squamous cells. Finally, ciliated cells could be

further divided into 5 distinct subtypes: interferon responsive ciliated cells (expressing anti-viral genes similar to other ‘‘interferon

responsive’’ subsets, such as IFIT1, IFIT3, IFI6), FOXJ1high ciliated cells, early response FOXJ1high ciliated cells (which, in addition

to high FOXJ1, also express higher abundances of genes such as JUN, EGR1, FOS than other ciliated cell subtypes), ciliahigh ciliated

cells (which broadly express the highest abundances of structural cilia genes, such as DLEC1 and CFAP100), and BEST4highciliahigh

ciliated cells (in addition to cilia components, also express the ion channelBEST4). We also recovered a very small population of cells
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we term ‘‘enteroendocrine cells,’’ based on unique expression of gastric inhibitory polypeptide (GIP), which is typically produced by

intestinal and gastric enteroendocrine cells and LGR5, which classically marks stem cell populations in the gastrointestinal mucosa

(Basak et al., 2017). Consistent with the use of nasal swabs for cell collection, we did not recover stromal cell populations such as

endothelial cells, fibroblasts, or pericytes (Deprez et al., 2020; Garcıá et al., 2019; Ordovas-Montanes et al., 2018).

We similarly analyzed immune cell types for additional diversity. Among macrophages (coarse annotation), we resolved 5 distinct

subtypes (Figure S3B). FFAR4high macrophages are defined by expression of FFAR4, MRC1, CHIT1, and SIGLEC11, as well as

chemotactic factors including CCL18, CCL15, genes involved in leukotriene synthesis (ALOX5, ALOX5AP, LTA4H), and toll-like re-

ceptors TLR8 and TLR2 (Figure S3F, full differentiating gene lists for immune subtypes found in Table S1). Interferon responsivemac-

rophages are distinguished by elevated expression of anti-viral genes such as IFIT3, IFIT2, ISG15, and MX1, akin to the epithelial

subsets labeled ‘‘interferon responsive,’’ along with CXCL9, CXCL10, CXCL11, which are likely indicative of IFNg stimulation.

MSR1highC1QBhigh macrophages are defined by cathepsin expression (CTSD, CTSL, CTSB) and elevated expression of complement

(C1QB, C1QA, C1QC), and lipid binding proteins (APOE, APOC, and NPC2). The fourth ‘‘specialized’’ subtype of macrophage we

term ‘‘inflammatory macrophages,’’ which uniquely express inflammatory cytokines such as CCL3, CCL3L1, IL1B, CXCL2, and

CXCL3. The remaining ‘‘ITGAXhigh’’ macrophages are distinguished from other immune cell types by ITGAX, VCAN, PSAP, FTL,

FTH1 and CD163 (though these genes are shared by other specialized macrophages subsets). T cells are largely CD69 and

CD8A positive, with significantly-enriched expression of ITGAE, ITGB7 and CD44, consistent with a T resident memory-like pheno-

type (Cosgrove et al., 2021), and we are not able to resolve a separate cluster of CD4 T cells (Table S1). Two specialized subtypes of

CD8 T cells are annotated from this dataset: one defined by exceptionally high expression of early response genes (FOSB, NR4A2,

and CCL5), and the other termed ‘‘interferon responsive cytotoxic CD8 T cells,’’ defined by granzyme and perforin expression

(GZMB, GZMA, GNLY, PRF1, GZMH), anti-viral genes (ISG20, IFIT3, APOBEC3C, GBP5) and genes associated with effector CD8

T cell function (LAG3, IL2RB, IKZF3, TBX21). Multiple cell types could not be further subdivided from their coarse annotation (Fig-

ure 1B, Figure S3A-S3E), including mast cells, plasmacytoid DCs, B cells, and dendritic cells.

RNA Velocity and Pseudotemporal Ordering of Epithelial Cells
RNA velocity was modeled using the scVelo package, version 0.2.3 (Bergen et al., 2020; La Manno et al., 2018). Briefly, RNA velocity

analysis leverages the dynamic relationships between expression of unspliced (intron-containing) and spliced (exonic) RNA across

thousands of variable genes, enabling 1) estimation of the directionality of transitions between distinct cells and cell types, and 2)

identification of putative driver genes behind these transitions. Using cluster annotations previously assigned from iterative clustering

in Seurat, cells from epithelial cell types were pre-processed according to the scVelo pipeline: genes were normalized using default

parameters (pp.filter_and_normalize), principal components and nearest neighbors in PCA space were calculated (using defaults of

30 PCs, 30 nearest neighbors), and the first and second order moments of nearest neighbors were computed, which are used as

inputs into velocity estimates (pp.moments). RNA velocity was estimated using the scVelo tool tl.recover_dynamics with default input

parameters, whichmaps the full splicing kinetics for all genes and tl.velocity, withmode = ’dynamical’. Top velocity transition ‘‘driver’’

genes were identified by high ‘‘fit_likelihood’’ parameters from the dynamical model, and are used for visualization in Figure S2L. The

same approaches were used for modeling RNA velocity among only basal, secretory, and goblet cells (Figures 2F–2I), only ciliated

cells (Figures 2K–2N), and only COVID-19 or only Control cells (Figures 2P, 2Q). For RNA velocity analysis of ciliated cells or basal,

secretory and goblet cells, the velocity pseudotime was calculated using the tl.velocity_pseudotime function with default settings.

Metatranscriptomic Classification of Reads from Single-Cell RNA-Seq
ScRNA-seq protocols utilize poly-adenylated RNA capture and reverse transcription to generate snapshots of the transcriptional sta-

tus of each individual cell. As several pathogens and commensal microbes also utilize poly-adenylation for RNA intermediates, or

contain poly-adenylated stretches of RNAwithin their genomes, theymay also be represented within scRNA-seq libraries. To identify

co-detected microbial taxa present in the cell-associated or ambient RNA of nasopharyngeal swabs, we used the Kraken2 software

implemented using the Broad Institute viral-ngs pipelines on Terra (https://github.com/broadinstitute/viral-pipelines/tree/master)

(Wood et al., 2019). A previously-published reference database included human, archaea, bacteria, plasmid, viral, fungi, and proto-

zoa species and was constructed on May 5, 2020, therefore included sequences belonging to the novel SARS-CoV-2 virus (Lemieux

et al., 2021). Inputs to Kraken2 were: kraken2_db_tgz = ’’gs://pathogen-public-dbs/v1/kraken2-broad-20200505.tar.zst,’’ krona_-

taxonomy_db_kraken2_tgz = ’’gs://pathogen-public-dbs/v1/krona.taxonomy-20200505.tab.zst,’’ ncbi_taxdump_tgz = ’’gs://path-

ogen-public-dbs/v1/taxdump-20200505.tar.gz,’’ trim_clip_db = ’’gs://pathogen-public-dbs/v0/contaminants.clip_db.fasta’’ and

spikein_db = ’’gs://pathogen-public-dbs/v0/ERCC_96_nopolyA.fasta.’’ Viral species with fewer than 5 reads were considered

spurious and excluded. Swabs from two individuals contain rare reads classified as Influenza A virus species, and we observe no

evidence for other seasonal human coronaviruses, Influenza B virus, metapneumovirus, or orthopneumovirus. Swabs from two in-

dividuals with mild/moderate COVID-19 contain exceptionally high abundances of reads classified as Rhinovirus A (2.1e5 and 2.4e5

reads) (Figure 4A).

Correction for Ambient Viral RNA and Defining High-Confidence SARS-CoV-2 RNA+ Cells
Data from high-throughput scRNA-seq platforms frequently experience low-levels of non-specific RNA assigned to cell barcodes

that does not represent true cell-derived transcriptomic material, but rather contamination from the ambient pool of RNA. To safe-
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guard against spurious assignment of SARS-CoV-2RNA to cells without true intracellular viral material, i.e., viral RNA non-specifically

picked up from the microenvironment as a component of ambient RNA contamination, we employed the following corrections and

statistical tests to control for ambient viral RNA and enable confident assignments for SARS-CoV-2 RNA+ cells. Similar to ap-

proaches previously described, we tested whether the abundance of viral RNA within a given single cell was significantly higher

than expected by chance given the estimate of ambient RNA contaminating that cell, as well as the proportion of viral RNA of the

total ambient RNA pool (Cao et al., 2020; Delorey et al., 2021; Fleming et al., 2019; Kotliar et al., 2020). First, this required modeling

and estimating the ambient RNA fraction associated with each individual swab. Here, we employed CellBender (https://github.com/

broadinstitute/CellBender), a software package built to learn the ambient RNA profile per sample and provide an ambient RNA-cor-

rected output (Fleming et al., 2019). Input UMI count matrices contained the top 10,000 cell barcodes, therefore including at least

70% cell barcodes sampling the ambient RNA and low-complexity cell barcodes. CellBender’s remove-background function was

runwith default parameters and–fpr 0.01–expected-cells 500–low-count-threshold 5. Using the corrected output from each sample’s

count matrix following CellBender, we calculated the proportion of ambient contamination per high-quality cell by comparing to the

single-cell’s transcriptome pre-correction, and summed all UMI from background cell barcodes to recover an estimate of the total

ambient pool. Next, we tested whether the abundance of viral RNA in a given single cell was significantly above the null abundance

given the ambient RNA characteristics using an exact binomial test (implemented in R: binom.test):

P xð Þ= n!

n� xð Þ!x! p
xqn�x where x = SARS­CoV­2 UMI per cell; n = total UMI per cell

p = ambient fraction per cellð Þ3 SARS­CoV­2 UMI fraction of all ambient UMIð Þ; and q = 1� p
P values were FDR-corrected within sample, and cells whose
 SARS-CoV-2 UMI abundance with FDR < 0.01 were considered

‘‘SARS-CoV-2 RNA+.’’

During SARS-CoV-2 infection, viral uncoating from endosomal vesicles releases the positive, single-stranded, 50 capped, poly-ad-
enylated genome into the host cytosol (Figures 4F, 4G). Here, translation of non-structural proteins proceeds first by templating

directly off of the viral genome, generating a replication and transcription complex. The viral replication complex then produces

both 1) negative strand genomic RNA intermediates, which serve as templates for further positive strand genomic RNA and 2) nested

subgenomic mRNAs which are constructed from a 50 leader sequence fused to a 30 sequence encoding structural proteins for pro-

duction of viral progeny (e.g., Spike, Envelope, Membrane, Nucleocapsid). Generation of nested subgenomic mRNAs relies on

discontinuous transcription occurring between pairs of 6-mer transcriptional regulatory sequences (TRS), one 30 to the leader

sequence (termed leader TRS, or TRS-L), and others 50 to each gene coding sequence (termed body TRS, or TRS-B) (Sawicki

et al., 2007). We reasoned that SARS-CoV-2 aligning UMI could be readily distinguished by their strandedness (aligning to the nega-

tive versus positive strand) and whether they fell within coding regions, across intact TRS (indicating RNA splicing had not occurred

for that RNAmolecule at that splice site) or across a TRS with leader-to-body fusions (corresponding to subgenomic RNA, Figure 4F,

4G, Figure S6A). Notably, single cells containing reads aligning to spliced (subgenomic) RNA are heavily skewed toward those cells

that contain the highest overall abundances of viral UMI – this may be an accurate reflection of coronavirus biology, wherein subge-

nomic RNA are most frequent within cells robustly producing new virions and total viral genomic material, but also points to inherent

limitations in the detection of low-frequency RNA species by single-cell RNA-seq technologies.

Differential Expression by Group, Cell Type, or Viral RNA Status
To compare gene expression between cells from distinct disease groups we employed a likelihood ratio test assuming a negative

binomial distribution. Cells from each cell type belonging to either COVID-19WHO1-5 (mild/moderate), COVID-19WHO6-8 (severe),

or Control WHO 0 were compared in a pairwise manner, implemented using the Seurat FindAllMarkers function (test.use = ‘‘negbi-

nom’’). We considered genes as differentially expressed with an FDR-adjusted p value < 0.001 and log fold change > 0.25. To

compare gene expression between SARS-CoV-2 RNA+ cells and bystander cells (from COVID-19 participants, but without intracel-

lular viral RNA) we used a negative binomial generalized linear model implemented using DESeq2 (Love et al., 2014). Here, we em-

ployed the following criteria for SARS-CoV-2 RNA+ versus bystander testing: 1) we only tested cell types containing at least 15 SARS-

CoV-2 RNA+ cells, 2) for each cell type, we restricted our bystander cells to the same participants as the SARS-CoV-2 RNA+ cells, 3)

in comparisons where bystander cells were substantially more numerous than SARS-CoV-2 RNA+ cells, we randomly sub-sampled

the bystander cells to at most 4x the number of SARS-CoV-2 RNA+ cells, and 4) we ensured that the sampled bystander cells for

comparison matched the cell quality distribution of the SARS-CoV-2 RNA+ cells, based on binned deciles of UMI/cell. DESeq2

was run with default parameters and test = ‘‘Wald.’’ Gene ontology analysis was run using the Database for Annotation, Visualization,

and Integrated Discovery (DAVID) (Huang et al., 2009). Gene set enrichment analysis (GSEA) was completed using the R package

fgsea over genes ranked by average log foldchange expression between each group, including all genes with an average expression

> 0.5 UMI within each respective cell type (Korotkevich et al., 2021). Gene lists corresponding to ‘‘Shared IFNResponse,’’ ‘‘Type I IFN

Specific Response’’ and ‘‘Type II IFN Specific Response’’ are derived frompreviously-published population RNA-seq data from nasal

epithelial basal cells treated in vitrowith 0.1 ng/mL – 10 ng/mL IFNa or IFNg for 12 h (Ziegler et al., 2020). Module scores were calcu-

lated using the Seurat function AddModuleScore with default inputs.
Cell 184, 4713–4733.e1–e9, September 2, 2021 e8

https://github.com/broadinstitute/CellBender
https://github.com/broadinstitute/CellBender


ll
OPEN ACCESS Article
Statistical Testing
All statistical tests were implemented either in R (v4.0.2) or Prism (v6) software (R Core Team, 2019). Comparisons between cell type

proportions by disease group were tested using a Kruskal-Wallis test with FDR correction across all cell types, implemented in R

using the kruskal.test, and p.adjust functions. Post-tests for between-group pairwise comparisons used Dunn’s test. Spearman cor-

relation was used where appropriate, implemented using the cor.test function in R. All testing for differential expression was imple-

mented in R using either Seurat, scVelo, or DESeq2, and all results were FDR-corrected as noted in specific STARMethods sections.

P values, n, and all summary statistics are provided either in the results section, figure legends, figure panels, or supplementary ta-

bles. Prism (v6), R (v4.0.2) packages ggplot2 (v3.3.2 (Wickham, 2016)), Seurat (v3.2.2 (Butler et al., 2018)), ComplexHeatmap (v2.7.3

(Gu et al., 2016)), Circlize (0.4.11 (Gu et al., 2014)), fgsea (v.1.16.0 (Korotkevich et al., 2021)), DESeq2 (v1.30.0 (Love et al., 2014)), and

Python (v3.8.3) package scVelo (v0.3.0 (Bergen et al., 2020)) were used for visualization.
e9 Cell 184, 4713–4733.e1–e9, September 2, 2021
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Figure S1. Cohort and cellular composition of nasopharyngeal swabs, related to Figure 1, Table 1
(A–E) Cohort composition and participant demographics (see also Table 1).

(A) Number of participants by disease group and peak WHO severity score. Dark blue: healthy individuals, Control WHO 0; light blue: Non-COVID-19 ICU/

respiratory failure, Control WHO 7-8; red: COVID-19 mild/moderate, COVID-19 WHO 1-5; pink: COVID-19 severe, COVID-19 WHO 6-8; black: recent COVID-19,

convalescent.

(B) Number of participants by WHO severity score, COVID-19 participants only.

(C) Participant race and ethnicity by disease group.

(D) Participant sex by disease group.

(E) Participant age by disease group

(F and G) Comparison of WHO severity at swab and peak. WHO severity score among COVID-19 participants at swab (left) and peak (right) (F). WHO severity at

swab (G). Red circles: COVID-19 mild/moderate (WHO 1-5) at peak. Pink squares: COVID-19 severe (WHO 6-8) at peak.

(H) SARS-CoV-2 serology: IgM (left) and IgG (right) titers from a subset of Control WHO 0 (blue circles, n = 13) and COVID-19 (red circles, mild/moderate: n = 8;

pink squares, severe: n = 15) participants. Plasma samples taken on same day of nasopharyngeal swab. Statistical testing by Kruskal-Wallis test with Dunn’s post

hoc testing. Asterisks represent results from Dunn’s test: **p < 0.01, ***p < 0.001. Dashed lines: lower limit of detection: 100; upper limit of detection: 100,000;

positive threshold: 5,000.

(I) Detailed schematic of sample preparation and cell processing from nasal swabs (created with BioRender).

(J) Number of high-quality cells/array recovered for single-cell RNA-seq by disease group. Statistical testing by Kruskal-Wallis test (p = 0.37) with Dunn’s post hoc

testing, all p > 0.05.

(K) Single-cell quality metrics by group (after filtering for low-quality cells, see STAR Methods).

(L) Single-cell quality metrics by participant (after filtering for low quality cells).
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Figure S2. Epithelial diversity and differentiation in the nasopharyngeal mucosa during COVID-19, related to Figure 2

(A) Flow cytometry and gating scheme of immune cells from a fresh nasopharyngeal (NP) swab. Representative healthy participant. Bottom right: quantification of

cellular proportions.

(B) Quality metrics for matched fresh versus frozen NP swabs from two healthy participants (P1 and P2).

(C) Percent composition of each cell type by processing type: fresh (gray circles) or frozen (black squares).

(D and E) UMAP of cells from P1, colored by cell types (D) and fresh (gray) versus frozen (black) (E).

(F and G) UMAP of cells from P2, colored by cell types (F) and fresh (gray) versus frozen (black) (G).

(H) Flow cytometry and gating scheme of epithelial cells from an NP swab. Representative data from a participant with severe COVID-19.

(I) Secretory cell proportion of live, CD45- cells from NP swabs. Healthy donors (Control WHO 0): n = 7. Severe COVID-19 (COVID-19 WHO 6-8): n = 7. Secretory

cells identified as Live, CD45-ATubulin-CD271-CD49f-CD66c+ cells. Statistical testing: Wilcoxon signed-rank test: **p = 0.0047.

(J) Proportional abundance of detailed epithelial cell types by participant. Ordered within group by developing ciliated cell proportion.

(K) Expression of entry factors for SARS-CoV-2 and other common upper respiratory viruses among detailed epithelial cell types. Dot size represents fraction of

cell type (rows) expressing a given gene (columns). Dot hue represents scaled average expression by gene column.

(L) Plot of gene expression by epithelial cell velocity pseudotime (over all epithelial cells). Select genes significantly associatedwith ciliated cell pseudotime (FDR<

0.01). Points colored by coarse cell type annotations. Top: alignment to unspliced (intronic) regions. Bottom: alignment to spliced (exonic) regions.

(M) Proportion of goblet cell subtypes (detailed annotation) by sample, normalized to all epithelial cells. Statistical test above graph represents Kruskal-Wallis test

results across all groups (following FDR correction).
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Figure S3. Immune cell diversity in the nasopharyngeal mucosa during COVID-19, related to Figures 1 and 3

(A–E) UMAP of 3,640 immune cells following re-clustering, colored by coarse cell types (A), detailed cell annotations (B), peak level of respiratory support (WHO

severity score) (C), participant’s COVID-19 status by viral PCR (D), and participant (E).

(F) Violin plots (log(1+normalized UMI per 10k)) of cluster marker genes (FDR < 0.01) for detailed immune cell type annotations (as in B).

(G) Proportional abundance of detailed immune cell types by participant.

(H) Proportion of immune cell subtypes by sample and disease group, normalized to all immune cells. Statistical test above graph represents Kruskal-Wallis test

results across all cell types (following FDR correction).

(I) Proportion of interferon responsive macrophages versus proportion of interferon responsive cytotoxic CD8 T cells per sample, normalized to total immune

cells. Including all samples, Control and COVID-19 groups.

(J and K) Heatmap of significantly DE genes betweenmacrophages (all, coarse annotation) (J) and T cells (all, coarse annotation) (K) fromdifferent disease groups.

Values represent row(gene)-scaled digital gene expression (DGE) following log(1+UMI per 10K) normalization.

(L) Top: Dot plot of IFNGR1, IFNGR2, IFNAR1, and IFNAR2 gene expression among all detailed immune subtypes. Bottom: Violin plots of module scores, split by

Control WHO 0 (blue), COVID-19WHO 1-5 (red), and COVID-19WHO 6-8 (pink). Genemodules represent transcriptional responses of human basal cells from the

nasal epithelium following in vitro treatment with IFNa or IFNg. Significance by Wilcoxon signed-rank test. P values following Bonferroni-correction: *p < 0.05,

**p < 0.01, ***p < 0.001.
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Figure S4. Cell-type-specific and shared transcriptional Responses to SARS-CoV-2 infection, related to Figure 3

(A) Abundance of significant DE genes by coarse cell type betweenControl WHO0 andCOVID-19WHO 1-5 samples (left), ControlWHO 0 andCOVID-19WHO 6-

8 samples (middle) and COVID-19 WHO 1-5 versus COVID-19 WHO 6-8 samples (right). Gene significance cutoffs: FDR-corrected p < 0.001, log2 fold change

> 0.25.

(B) Heatmap of significantly DE genes between ciliated cells (all, coarse annotation) from different disease groups. Values represent row(gene)-scaled digital gene

expression (DGE) following log(1+UMI per 10K) normalization.

(C) Top: Dot plot of IFNGR1, IFNGR2, IFNAR1, and IFNAR2 gene expression among all detailed epithelial subtypes. Bottom: Violin plots of module scores, split by

Control WHO 0 (blue), COVID-19WHO 1-5 (red), and COVID-19WHO 6-8 (pink). Genemodules represent transcriptional responses of human basal cells from the

nasal epithelium following in vitro treatment with IFNa or IFNg. Significance by Wilcoxon signed-rank test. P values following Bonferroni-correction: *p < 0.05,

**p < 0.01, ***p < 0.001.

(D) Dot plot of ACE2 expression across select epithelial cell types and subsets.

(E) Venn diagram of significantly upregulated genes among ciliated cells betweenCOVID-19WHO1-5 versus ControlWHO0 (red) andCOVID-19WHO6-8 versus

Control WHO 0 (pink). Asterisk: genes impacted by corticosteroid treatment within each group.

(F) Violin plots of select genes upregulated among ciliated cells in COVID-19 WHO 1-5 participants compared to Control WHO 0 (PARP14, ISG15) and in COVID-

19 WHO 6-8 participants compared to Control WHO 0 (FKBP5). Cells separated by participant treatment with corticosteroids. *** FDR-corrected p < 0.001.

(G) Dot plot of interferon and cytokine expression among detailed epithelial and immune cell types.

(H) Dot plot of type I and type III interferons among ciliated, goblet, and squamous cells. Left: healthy versus influenza A/B virus infected participants from Cao

et al., 2020. Right: Control WHO 0 versus COVID-19 WHO 1-5, versus COVID-19 WHO 6-8 participants. Datasets processed and scaled identically.
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Figure S5. Detection of SARS-CoV-2 RNA from single-cell RNA-seq data, related to Figures 4 and 5
(A–C) Metatranscriptomic classification of all scRNA-seq reads using Kraken2. Reads per sample annotated as unclassified (A),Homo sapiens (B), SARS-related

coronaviruses (C).

(D) Total recovered cells per sample versus normalized abundance of SARS-CoV-2 aligning UMI from all scRNA-seq UMI (including those derived from ambient/

low-complexity cell barcodes).

(E) Normalized abundance of SARS-CoV-2 aligning UMI across all COVID-19 participants. Dashed line represents partition between ‘‘Viral High’’ versus ‘‘Viral

Low’’ samples (1,000 SARS-CoV-2 UMI/million (M) UMI).

(F) Proportional abundance of selected cell types according to total SARS-CoV-2 abundance among COVID-19 samples, stratified by cutoffs in panel E. Sta-

tistical test above graph represents FDR-corrected Kruskal-Wallis test statistic across all groups. Statistical significance asterisks within box represent significant

results from Dunn’s post hoc testing. *p < 0.05, **p < 0.01, ***p < 0.001.

(G) Normalized abundance of SARS-CoV-2 aligning UMI versus anti-SARS-CoV-2 IgM (left) or IgG titers (right). Plasma samples taken on same day of naso-

pharyngeal swab. Subset of Control WHO 0 (blue circles, n = 13) and COVID-19 (red circles, mild/moderate: n = 8; pink squares, severe: n = 15) participants.

Dashed lines: lower limit of detection: 100; upper limit of detection: 100,000; positive threshold: 5,000. Pearson’s correlation of COVID-19 samples: IgM: r =

�0.59, **p = 0.0028; IgG: r = �0.60, **p = 0.0025.

(H) Abundance of SARS-CoV-2 aligning UMI/cell by participant prior to (top) and following (bottom) ambient viral RNA correction (see STAR Methods).

(I) Quality metrics among 415 SARS-CoV-2 RNA+ cells (associated with high-quality cell barcodes and following ambient viral RNA correction). Left: abundance of

SARS-CoV-2 aligning UMI versus percent of all SARS-CoV-2 aligned reads (per cell barcode). Middle: abundance of human (GRCh38)-aligning UMI versus

abundance of SARS-CoV-2 aligning UMI. Right: abundance of human (GRCh38) aligning UMI versus percent of all human aligned reads (per cell barcode).

(J) Percent SARS-CoV-2 RNA+ cells (associated with high-quality cell barcodes and following ambient viral RNA correction) per donor, separated by disease

group. Statistical test above graph represents Kruskal-Wallis test statistic across all groups. Statistical significance asterisks within box represent significant

results from Dunn’s post hoc testing. *p < 0.05, **p < 0.01.
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Figure S6. SARS-CoV-2 RNA and cell types containing viral reads, related to Figures 4 and 5

(A) Schematic of method to distinguish unspliced from spliced SARS-CoV-2 RNA species by searching for reads which align across a spliced or genomic

Transcription Regulatory Sequence (TRS).

(B) Abundance of SARS-CoV-2 aligning UMI/Cell per detailed cell type (following ambient viral RNA correction), split by UMI aligning to the viral positive strand,

negative strand, 70-mer region across an unspliced TRS, and 70-mer region across a spliced TRS.

(C) Abundance of SARS-CoV-2 aligning UMI/Cell per participant (following ambient viral RNA correction), split by UMI aligning to the viral positive strand, negative

strand, 70-mer region across an unspliced TRS, and 70-mer region across a spliced TRS.

(legend continued on next page)
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(D and E) Dot plot of SARS-CoV-2 unspliced TRS aligning UMI (D) and spliced TRS aligning UMI (E) by participant (columns) and detailed cell type (rows). Dot size

corresponds to the percent of cells within each sample/cell type containing unspliced (D) or spliced (E) TRS UMI.

(F andG) Abundance of SARS-CoV-2 negative strand aligning reads by coarse epithelial cell types (F) and detailed ciliated cell types (G). Statistical significance by

Kruskal-Wallis test (p value outside box). Asterisks within box: pairwise Wilcoxon rank sum test, Bonferroni-corrected: ***p < 0.001, **p < 0.01, *p < 0.05

ll
OPEN ACCESSArticle



Figure S7. Intrinsic and bystander responses to SARS-CoV-2 infection, related to Figure 6

(A) Heatmaps of log fold changes between SARS-CoV-2 RNA+ cells and bystander cells by cell type. Gene sets derived from four CRISPR screens for important

host factors in the SARS-CoV-2 viral life cycle. Restricted to cell types with at least 5 SARS-CoV-2 RNA+ cells. Yellow: upregulated among SARS-CoV-2 RNA+

cells, blue: upregulated among bystander cells.

(B) Violin plots of select genes upregulated in SARS-CoV-2 RNA+ cells when compared to matched bystanders. Plotting only SARS-CoV-2 RNA+ cells from

COVID-19WHO 1-5 participants (red) and COVID-19WHO 6-8 participants (pink). Statistical significance by likelihood ratio test assuming an underlying negative

binomial distribution. *** FDR-corrected p < 0.001, **p < 0.01, *p < 0.05.

(legend continued on next page)
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(C) Heatmap of Spearman’s correlation between 73 clinical parameters, demographic data, or results from scRNA-seq. Includes individuals from healthy (Control

WHO 0), COVID-19 mild/moderate (COVID-19 WHO 1-5) and COVID-19 severe (COVID-19 WHO 6-8) groups. Colored squares represent statistically significant

associations by permutation test (p < 0.01; red: positive Spearman’s rho; blue: negative Spearman’s rho).
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