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ABSTRACT 30	

 Cellular immunity is critical for controlling intracellular pathogens, but the dynamics and 31	
cooperativity of the evolving host response to infection are not well defined. Here, we apply single-32	
cell RNA-sequencing to longitudinally profile pre- and immediately post-HIV infection peripheral 33	
immune responses of multiple cell types in four untreated individuals. Onset of viremia induces a 34	
strong transcriptional interferon response integrated across most cell types, with subsequent pro-35	
inflammatory T cell differentiation, monocyte MHC-II upregulation, and cytolytic killing. With 36	
longitudinal sampling, we nominate key intra- and extracellular drivers that induce these 37	
programs, and assign their multi-cellular targets, temporal ordering, and duration in acute 38	
infection. Two individuals studied developed spontaneous viral control, associated with initial 39	
elevated frequencies of proliferating cytotoxic cells, inclusive of a previously unappreciated 40	
proliferating natural killer (NK) cell subset. Our study presents a unified framework for 41	
characterizing immune evolution during a persistent human viral infection at single-cell resolution, 42	
and highlights programs that may drive response coordination and influence clinical trajectory.  43	

 44	

Introduction 45	
 Understanding the dynamics of host-pathogen interactions during acute viral infection in 46	
humans has been hindered by limited sample availability and technical complications associated 47	
with comprehensively profiling heterogeneous cellular ensembles. To date, microarray and bulk 48	
transcriptomic studies of yellow fever vaccination1 and influenza infection2 have highlighted 49	
complex cellular responses that vary as a function of time, largely characterizing a common 50	
systemic interferon stimulated gene (ISG) program. In each instance, additional insights might be 51	
gleaned through more sensitive, discretized systems-approaches that can elucidate the 52	
contributions of individual cellular components and nominate features that drive productive 53	
responses essential to improve vaccines.  54	

Recently, high-throughput single-cell RNA-sequencing (scRNA-Seq) has emerged as a 55	
powerful tool to characterize, transcriptome-wide, complex human systems in health and disease 56	
at single-cell resolution3–9. When applied to a collection of samples across a disease setting, this 57	
approach provides a platform for investigating cell types, states, interactions, and drivers 58	
associated with that disease; this information can be used to develop testable hypotheses on 59	
therapeutic modulations that may ameliorate disease state7,8. Meanwhile, within an individual, 60	
longitudinal sampling provides an opportunity to decipher, at unprecedented resolution and 61	
absent potentially confounding inter-individual variability7, shifts in these same variables, and to 62	
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associate observed changes with internal or external perturbations10–12. Such sampling of a host’s 63	
exposure to a pathogen could provide foundational insights into essential cellular response 64	
features and their coordination, empowering the rational design of improved prophylactic 65	
interventions. 66	

Illustratively, a better understanding of the interplay between innate and adaptive immune 67	
responses at the very earliest stages of a viral infection, and its impact on long-term disease, 68	
could reveal principles to accelerate prevention efforts. Human Immunodeficiency Virus (HIV) has 69	
been the subject of thorough study, and thus is a well-considered model system for examining 70	
host responses to a pathogen. Moreover, although the development of antiretroviral therapy 71	
(ART)13, as well as implementation of pre-exposure prophylaxis (PrEP)14 and combination 72	
prevention efforts, has improved the lives of persons living with HIV, increased life expectancies, 73	
and reduced the number of new infections, there were still 2 million new cases of HIV-1 infection 74	
in 201715. This highlights a pressing need for effective HIV vaccines informed by an understanding 75	
of natural host-pathogen dynamics.  76	

Here, we apply scRNA-Seq to perform an integrated longitudinal analysis of implicated 77	
cell programs and drivers during the critical earliest stages of HIV infection. By examining 78	
individuals in the Females Rising through Education, Support and Health (FRESH) study16,17 – a 79	
unique prospective cohort of uninfected young women at high risk of contracting HIV who are 80	
monitored for acute viremia by twice weekly plasma sampling – and focusing on those who were 81	
enrolled at a time when standard of care did not include treatment during acute disease, we 82	
comprehensively examine untreated cellular immune dynamics during the evolution of hyper-83	
acute infection into chronic viremia. Among over 65,000 cells obtained from repeated sampling of 84	
peripheral blood, we identify cell types, states, gene modules, and molecular drivers associated 85	
with coordinated immune responses to a viral pathogen. Further, these data suggest candidate 86	
cellular features that may influence the magnitude of chronic viremia, known to predict long-term 87	
infection outcome. Overall, our longitudinal, granular approach captures multiple dynamic and 88	
coordinated immune responses – both shared and distinct between cell types and individuals – 89	
and provides a framework for their elucidation in health and disease.  90	

 91	

Results 92	

Longitudinal single-cell transcriptomic profiling captures major and granular immune 93	
subsets in hyper-acute infection 94	
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In order to globally and longitudinally examine host immune responses during a hyper-95	
acute infection, we performed scRNA-Seq on peripheral blood mononuclear cells (PBMCs) from 96	
four individuals enrolled in FRESH who became infected with HIV, assessing multiple timepoints 97	
from pre-infection through one year following initial detection of viremia (Fig. 1A, table S1). In our 98	
study, hyper-acute infection refers to timepoints at and prior to peak-viral load, whereas acute 99	
infection refers to timepoints after peak viral load but before 6 months. Samples were processed 100	
in duplicate using Seq-Well18 – a portable, low-input massively-parallel scRNA-Seq platform 101	
designed for clinical specimens – allowing for robust single-cell transcriptional analysis of PBMC 102	
subsets. All individuals studied demonstrated the expected rapid rise in plasma viremia and drop 103	
in CD4+ T cell counts that typify hyper-acute and acute HIV infection (Fig. 1B). Among all 104	
individuals, we captured 65,842 cells after eliminating low quality cells and multiplets (see 105	
Methods), with an average of 2,195 cells per individual per timepoint. Alignment to a combined 106	
human and HIV genome at peak infection timepoints yielded few reads mapping to HIV; therefore, 107	
alignment for all samples was conducted using a human-only reference. 108	

To assign cellular identity, we performed variable gene selection, dimensionality reduction, 109	
clustering, and embedding en masse across data collected from all individuals and timepoints 110	
(see Methods). Samples were combined for cell type/phenotype identification to find common 111	
transcriptional features of ubiquitous cell subsets, and to improve statistical power on classifying 112	
small/rare cell types. Importantly, combined analyses yielded few individual-specific features in 113	
the resulting clustering and embedding, suggesting that disease biology, rather than technical 114	
batch, is the main driver of variation and subsequent clustering (Fig. 1D, Fig. S1A,B). We 115	
annotated identified clusters by comparing differentially expressed (DE) genes that defined each 116	
to known lineage markers and previously published scRNA-Seq datasets19–21 (Fig. S1C, see 117	
Table S2 for list of DE markers). These clusters recapitulated several well-annotated PBMC 118	
subsets (Fig. 1C), in addition to revealing phenotypic groupings of monocytes (anti-viral, 119	
inflammatory, non-classical) and cytotoxic T cells (CD8+ CTL, proliferating; see Fig. S1D). Thus, 120	
we readily and reproducibly mapped the cellular players and phenotypes present along the course 121	
of disease progression. 122	

 123	

Cell frequency over time is readily obtained from transcript-assigned cellular identity 124	

 We next examined cellular dynamics over the course of infection, beginning with a pre-125	
infection time point. Onset of HIV infection is typically accompanied by an initial depletion of CD4+ 126	
T cells in the blood and a subsequent small rebound before continued depletion in chronic 127	
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infection22. To ensure that our estimated frequencies would recapitulate conventional 128	
measurements of our samples, in parallel, we employed flow cytometry to independently establish 129	
the frequencies of T cell subsets (Fig. S2A). Linear regression of the measured CD3+CD4+ and 130	
CD3+CD8+ flow populations (% of total CD45+ cells) with their respective single-cell transcriptome 131	
clusters (% of total single cells) across time yielded strong correlations (linear regression, F-test): 132	
average CD4+ – R2 = 0.491, p = 0.0416; average CD8+ – R2 = 0.665, p = 0.00158 (Fig. 1E). 133	
Subsequently, we calculated frequencies for the other cell types in our scRNA-Seq data as a 134	
function of time (Fig. S2B). In each individual, we measured an expansion in monocytes at HIV 135	
detection and in NK cells that peaked at 3- or 4-weeks post-detection, in-line with studies of 136	
influenza and murine cytomegalovirus (MCMV) demonstrating expansion and recruitment of 137	
monocytes and NK cells to sites of infection, though on shorter time-scales23–25. Altogether, our 138	
data elucidate dynamic temporal shifts in the abundance of different cellular subsets during hyper-139	
acute and acute HIV infection aligned with flow cytometry; more importantly, with whole 140	
transcriptome information, they enable further global characterization of subcellular activity within 141	
and between these subsets. 142	

 143	

Discovering structured variation in cell phenotypes over time in response to infection 144	

 To understand how the identified cell types – monocytes, dendritic cells (DCs), 145	
plasmablasts, B cells, natural killer (NK) cells, CD4+ T cells, CD8+ T cells, and proliferating T cells 146	
(a sub-cluster of CTLs, see Fig S1D) – varied in phenotype over the course of infection, we 147	
assessed coordinated changes in gene expression within each cell type that significantly varied 148	
in time. Since the immune responses and time courses of infection were heterogeneous among 149	
participants due to our sampling scheme and natural human variability, we performed analyses 150	
on an individual-by-individual and cell-type-by-cell-type basis. In this way, our results are sensitive 151	
to both intra- and inter-individual changes in gene expression.  152	

To identify tightly co-regulated modules (M) of genes for each type for each individual, we 153	
applied weighted gene correlation network analysis (WGCNA)26,27 on all cells classified as a 154	
particular cell type across all timepoints (Fig. 2A; see Methods for details). Strongly correlated 155	
gene modules (permutation test for within-module similarity, FDR corrected q < 0.05) were then 156	
tested for significant variation over time by scoring cells at each timepoint against the genes within 157	
a module, followed by tests for shifts in score distribution between pairs of timepoints (Wilcoxon 158	
rank sum test, FDR corrected q < 0.05). This generated 0-8 temporal modules per cell type (for a 159	
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list of all significant modules see Table S3 for gene membership and Table S4 for median module 160	
scores over time).  161	

Across cell types within an individual, these gene program trajectories demonstrated 162	
common transient patterns along the course of infection, indicating the utility of this approach in 163	
identifying groups of genes acting in concert. While a similar approach is possible using bulk RNA-164	
seq data, here, we are powered to identify temporally similar modules active in distinct subsets of 165	
cells both within and across time. Compared to a directed approach, this discovery-based 166	
identification of temporally-variant modules enables unbiased selection of coordinated genes and 167	
pathways, and immediately reveals differences in response dynamics among cell types, states, 168	
and individuals.  169	

 170	

Temporal module analysis reveals shared and unique responses to interferon across cell 171	
subsets near peak viremia 172	

 With distinct, temporally-variant modules across all cell types and individuals in hand, we 173	
next sought to understand these response modules and their association with plasma viral load, 174	
the main clinical parameter linked with disease progression rate and clinical outcome28,29. 175	
Beginning with one individual (P1), we identified a set of 6 significant gene modules spanning 176	
multiple cell types that all shared their highest relative module score at the peak viremia timepoint 177	
(Fig. 2B). Upon inspection of the genes within each, we uncovered a core set of genes shared 178	
among the modules from all cell types: IFI27, IFI44L, IFI6, IFIT3, ISG15, and XAF1. These genes, 179	
in addition to many others belonging to one or multiple of these peak viral load modules, are all 180	
induced by type I interferon (IFN-I) stimulation in cell lines and ex-vivo primary cells30–32 (Fig. 2C, 181	
Fig. S3A). Since these modules were generated de-novo, our results also report cell type specific 182	
genes and functions that correlate with the core measured IFN response signature: anti-viral 183	
activity (CXCL10, DEFB1, IFI27L1) in monocytes33,34, DC activation (PARP9, STAT1) likely 184	
through sensing of HIV by pattern recognition receptors and interferon by interferon receptors 35–185	
37, differentiation of naïve CD4+ T cells (CD52, TIGIT, TRAC) potentially into HIV-specific T helper 186	
cells38–41, and NK cell trafficking (CX3CR1, ICAM2) shown to occur in other viral infections42–44.  187	

As transcriptional work in humans has been limited to late-acute stage and treated 188	
infection45, we sought to contextualize our data against the massive IFN response measured in 189	
acute SIV infection46–49, specifically in rhesus macaques (RM, see Fig. S3B)47. In SIV models, 190	
natural hosts of the infecting virus (e.g., sooty mangabeys) resolve IFN immune activation more 191	
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quickly than susceptible hosts, positing that time to resolution may reflect future control in chronic 192	
infection (>180 days). By comparison, we find that many IFN stimulated genes induced in RM for 193	
2+ weeks arise and resolve within one week (i.e., upregulate at one timepoint). Here, we are 194	
powered to assign the cells expressing these various response genes. For example, upregulation 195	
of RIG-I (DDX58) is limited to myeloid cells – though RIG-I signaling has been shown to be 196	
subverted by HIV50 – whereas only CD4+ T cells exhibit higher levels of STAT2, suggesting a 197	
polarization towards a TH1 phenotype51.  198	

 Subsequently, we examined the expression of IRF7, one of the interferon regulatory 199	
factors that is responsible for anti-viral mediated IFN-I production in SIV/HIV52,53 and other viral 200	
infections, to determine which cells might be generating this pervasive wave of IFN. In individual 201	
P1, almost all cell types demonstrated higher expression of IRF7 compared to pre-infection and 202	
1-year timepoints (Fig. S3C), highlighting the pervasiveness of IFN-I in response to high levels of 203	
viremia and potentially indicative of the positive feedback loop it induces54–56. Since plasmacytoid 204	
DCs (pDCs) are known to produce IFN-a and IFN-b in response to HIV57, we also assayed single 205	
pDCs at peak viremia and 1-year post-infection using a plate-based scRNA-Seq method 206	
compatible with enrichment by FACS (Smart-Seq258) (Fig. S4A). At both times, type I IFNs were 207	
undetectable (see Supplementary Text). Comparing pDCs between them, we observe modestly 208	
increased expression of IRF7 at peak viremia (Wilcoxon rank sum test, FDR corrected q < 1, 209	
log(Fold Change) = 0.42). However, these cells also upregulated several ISGs that were present 210	
in the modules of other cell types (Fig. S4B).  211	

 We next sought to identify whether similar gene expression programs typified responses 212	
in the other three individuals assayed. We readily discovered a similar set of modules around the 213	
time of peak viremia in each individual (Fig. 2D and Fig. S3D), as well as shared responses among 214	
pDCs (Fig. S4C). Comparing modules across our cohort, we noted common response genes 215	
(present in 3 or more cell-types) either shared (ISG15, IFIT3, XAF1) or specific (APOBEC3A, 216	
IFI27, STAT1) to subsets of individuals, suggesting potential core programming and the possibility 217	
for the same immune drivers to induce distinct gene responses (Fig. S4D). Finally, to confirm the 218	
presence of downstream cytokines from IFN stimulation, we measured MIG (CXCL9) and IP10 219	
(CXCL10) levels in plasma at pre-infection, peak viremia, and 9-months post infection (Fig. 2E; 220	
Methods). All four individuals demonstrated higher levels of IP10 at peak viremia, and three 221	
demonstrated elevated levels of MIG. Together, these data highlight the ability of our approach 222	
to ascertain a short, pervasive wave of IFN responses in most peripheral immune cells that 223	
coincides with, or precedes, peak viremia in hyper-acute HIV infection. Moreover, we uncover 224	
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nuanced differences among individuals and cellular subsets in this response, as might be 225	
expected for an infection associated with diverse clinical courses (e.g., differences in plasma 226	
viremia; Fig. 1B).  227	

 228	

Individuals demonstrate diverse, yet coordinated, immune responses during the first 229	
month of infection 230	

 To investigate other groups of temporally similar modules, we next applied fuzzy c-means 231	
clustering59,60 to the median module scores at each timepoint across all cell types on an individual-232	
by-individual basis to generate clusters of modules, hereafter referred to as meta-modules (MMs). 233	
We subsequently grouped these MMs by temporal shape (Fig. S5 and see Methods for choice of 234	
c). MMs represent gene programming in distinct cell types that demonstrate coordinated temporal 235	
patterns – here, various cell-types responding simultaneously to infection – enabling us to link 236	
discrete transcriptional responses to their propagators. In addition to the aforementioned MM that 237	
contained the majority of the IFN response modules (labeled MM3), the only other MM that 238	
spanned the majority of cell types was one enriched for ribosomal protein coding genes (labeled 239	
MM5, see table S3) – known to indicate cellular quiescence61. MM5 demonstrated temporal 240	
profiles defined by minimum module scores (i.e., significantly downregulated) around peak 241	
viremia, anti-concordant with the immune activation (i.e., significant upregulation) seen in MM3.  242	

Another MM that shared similar temporal immune responses across individuals was MM1, 243	
comprised of responses sustained throughout one-month post-detection. In at least 2 of the 4 244	
individuals studied, we identified sustained response modules with shared genes in CD4+ T cells, 245	
monocytes, NK cells, CTLs, and proliferating T cells (Fig. 3A-E, see table S5 for overlapping 246	
genes). While DCs and B cells also expressed multiple modules within this MM, some modules 247	
had low MM membership scores and were excluded (membership < 0.25, labeled with † in Fig. 248	
S5) or did not share any genes across individuals (Fig. S6A and Supplementary Text).  249	

As each module within MM1 is distinct, we performed gene set enrichment analyses (see 250	
Methods) to discern if, in addition to sharing genes, modules from the same cell type shared 251	
functional annotations across individuals (Fig. 3A-E). In every cell type, modules across 252	
individuals were significantly enriched for many of the same underlying pathways (see table S6 253	
for full list), despite slightly variable temporal dynamics and unique gene membership. CD4+ T 254	
cells expressed genes associated with non-classical viral entry by endocytosis62 as well as 255	
adhesion, potentially suggesting migration and viral dissemination throughout the body. 256	
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Monocytes expressed genes associated with antigen presentation and IL-4 signaling (mainly 257	
HLA-DR subunits), which may reflect generalized interferon responses, or the potential to 258	
promote active T helper and CTL responses. NK cells, CTLs, and proliferating T cells all 259	
upregulated genes associated with killing of target cells by perforin and granzyme release, 260	
highlighting the joint role of innate and adaptive cells in combating viremia (see Table S5 and Fig. 261	
S6B for all shared responses across cell types)63,64. Thus, our results indicate common functional 262	
enrichments supported by gene sets that vary across cell types and individuals in response to 263	
infection. 264	

 265	

Distinct cell types respond to common and unique upstream drivers induced in infection. 266	

 To identify common and cell-type specific inducers of these measured transient responses 267	
extending past peak viremia, we generated a list of predicted upstream drivers of each module 268	
(see Table S6). Selecting highly significant hits in at least two modules, we drew a network of 269	
putative upstream drivers (nodes) colored by significance in each cell type with edges connecting 270	
nodes with shared enriched genes (Fig. 3F, Fig. S6C, and see Methods). Strikingly, IFN-a and 271	
IFN-g are predicted drivers of these sustained responses for all five cell types even though these 272	
modules do not contain the typical ISGs; in chronic HIV infection, prolonged IFN-I stimulation has 273	
been shown to maintain viral suppression but also blunt other immune functions in a humanized 274	
mouse model65,66. Matching Luminex data confirmed elevated levels of IP-10 and MIG at one-275	
month post HIV detection (Fig. S6D). IL-15 and IL-2, known to induce T and NK cell proliferation 276	
but to lead to defects in chronic infection67–69, were enriched as drivers for all lymphocytes 277	
explored. However, they also shared enriched genes with several other interleukins, including IL-278	
4, IL-12 (also elevated in plasma, see Fig. S6D), and IL-21. Interestingly, only CD4+ T cell modules 279	
were enriched for TNF, IL-1B, and OSM, suggesting the directed induction of pro-inflammatory T 280	
helper cells70. Meanwhile, monocytes and NK cells were enriched for CIITA and EBI3 (a subunit 281	
of IL-27), which regulate MHC-II and MHC-I genes, respectively71,72.  282	

We also contextualized observed responses to these upstream drivers temporally by re-283	
scoring against enriched genes for each driver. This analysis revealed variable kinetics in the 284	
onset, intensity, and length of immune responses across different cell types (Fig. 3G, Fig. S7). 285	
We note the following gene-programming upregulation trends in most individuals: CD4+ T cells 286	
are active from before peak viremia throughout 3-4 weeks post infection, and CTL and 287	
proliferating T cell programs are induced for 2-3 weeks around peak viremia, whereas NK cell 288	
and monocyte activity extends throughout the first month of infection.  289	



 10 

Based on shared cell-type enrichments, genes, and functions, we summarize the 290	
multitude of common immune responses displaying sustained gene expression over the course 291	
of first month of HIV infection, and their potential drivers, across individuals (Fig. 3H). While the 292	
IFN stimulated gene programs do not extend past hyper-acute infection, our data suggest that 293	
persistent IFN activation could manifest in different ways in each cell type, leading long-term to 294	
previously shown dysfunction partially mediated by IFN in chronic infection73. This analysis also 295	
support more complex cytokine interactions – some previously described as synergistic (e.g. IL-296	
2 & IL-1874) or antagonistic (e.g. IL-6 & IL-2775) – occurring in acute infection, and delineates how 297	
they may affect various cell types. Though dozens of cytokines are known to elevate in plasma 298	
during acute HIV infection76, here we present a putative schematic of which cell types they 299	
modulate alongside other extracellular proteins and transcription factors active during this time 300	
frame. Furthermore, our analysis establishes a blueprint of multi-cellular responses to several 301	
stimuli along the course of hyper-acute and acute infection to be edified by application to other 302	
pathogens. 303	

 304	

Two instances of temporally similar modules within a cell type discerned by scRNA-Seq  305	

 After discovering temporally variant modules in our dataset, we observed a few sets that 306	
demonstrated similar temporal response patterns in a given cell type, but were not combined into 307	
a single module by our framework. We thus sought to understand how these modules might be 308	
linked by looking across single cells for module co-expression. Here, single-cell expression data 309	
are essential to distinguish response circuitry among cells. 310	

The clearest example of multiple modules being co-expressed with the same temporal 311	
pattern in the same cell type from our analysis was the NK activated M3 module (CCL3, CCL4, 312	
CD38) and the cytotoxic M4 module (PRF1, GZMB, HLA-A) in P3 (Fig. 3D), both part of MM1. 313	
Enrichment analysis demonstrated little overlap between the significant pathways associated with 314	
these modules, implying orthogonal biological function. We therefore investigated whether the 315	
gene programs for these modules were highly co-expressed in the same single cells and thus co-316	
varied among single cells across time (Fig. S8A). While we did not observe differential 317	
simultaneous upregulation of these modules between time points, we found variation in the 318	
correlation of cell-scores for the pair as a function of time across single cells, with the strongest 319	
correlation one to two weeks after HIV detection (Fig. S8B). Variation in the correlation of M3 and 320	
M4 may reflect a synergizing of these gene programs77 within NK cells to combat HIV as viremia 321	
declines post peak.  322	
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 In examining MM3 (Fig. S5) – containing the majority of the IFN response modules – we 323	
observed that P3 also exhibited a set of temporally similar modules in monocytes (M1 & M3); 324	
however, these modules did not variably correlate in expression score as a function of time. 325	
Instead, these gene programs were highly co-expressed but only at HIV-detection (Fig. S8C-D). 326	
Gene set analysis readily demonstrated that monocyte M1 consisted of IFN response genes, 327	
while M3 was enriched for genes associated with inflammation (Fig. S8E). IFN has been shown 328	
to stunt the production of pro-inflammatory cytokines in monocytes similar to the phenotype 329	
observed in these cells in viremic persons78,79, but the co-expression of anti-viral and pro-330	
inflammatory signals in the same single cells has not yet been described to our knowledge. As 331	
these module scores are generated independently for each single cell, individual monocytes in 332	
this person at the time of HIV detection are simultaneously expressing both anti-viral and 333	
inflammatory gene programs. Critically, our longitudinal granular, single-cell approach facilitates 334	
the study of variation in gene module correlation and co-upregulation, suggesting key cellular 335	
circuitry, and its coordination, during response to infection. 336	

 337	

One individual who naturally controls infection displays a polyfunctional subset of 338	
monocytes at HIV detection 339	

 Intrigued by the appearance of these polyfunctional monocytes in one individual, we next 340	
explored whether the other individuals assayed developed similar cells after infection. Scoring 341	
monocytes from each individual on inflammatory and anti-viral gene lists derived from discovered 342	
modules (Fig. S9A), we were unable to identify these polyfunctional monocytes in the other three 343	
individuals (Fig. 4A-B, Fig. S9B-C). In fact, looking at structured gene variation in monocytes over 344	
time in principal component analysis (PCA) space revealed that the major axis of variation (PC1) 345	
in P1 and P2 not only reflected sample timepoint, but also separated monocytes based on their 346	
expression of anti-viral and inflammatory genes. In P3 and P4, however, these gene programs 347	
contributed to different principal components, suggesting their independence in defining 348	
monocyte phenotype. 349	

 In all four individuals, we saw dramatic structuring of the monocytes in PC space by time. 350	
Specifically, monocytes sampled at HIV detection (0 weeks) or 1-week post-detection were 351	
strongly separated along either PC1 or PC2, indicating a pervasive hyper-acute response to 352	
infection. Interestingly, non-classical monocytes (see Fig. S1D and Table S2), which may be more 353	
susceptible to infection80, displayed disparate temporal dynamics across individuals, even though 354	
they drove significant variation in PCA space (Fig. S9D). Comparing DE genes at these peak 355	
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response timepoints (vs. pre-infection) highlighted not only the specificity of the co-356	
inflammatory/anti-viral monocytes to P3, but also other person specific differences in monocyte 357	
phenotype (Fig. 4C). Gene set analysis on upregulated genes in each individual confirmed that 358	
monocytes in all individuals produced strong anti-viral factors (e.g., RIG-I, APOBEC3B, MX1) with 359	
significant enrichment (MHC hypergeometric test, q<0.001) for response to IFN-a and IFN-g (Fig. 360	
4D). Moreover, corroborating the scoring on inflammatory genes, only P2 and P3 were 361	
significantly enriched for inflammatory responses, and only P3 for TNF signaling via NF-kB (MHC 362	
hypergeometric test, q<0.001). In fact, P1 and P2 demonstrated downregulation of genes 363	
associated with inflammation compared to pre-infection. 364	

 Subsequently, we investigated known clinical parameters in our cohort for features of 365	
infection that might be related to the appearance of these polyfunctional cells. As the level of viral 366	
load in chronic infection correlates with disease outcome28, we compared the viral load setpoints 367	
of these individuals at 1.8, 2.3, and 2.75 years after HIV detection. Two of the four individuals (P3 368	
& P4) maintained low levels of viremia (< 1,000 viral copies (vc)/mL) out to 2.75 years in the 369	
absence of ART (Fig. 4E). HIV infected persons who naturally maintain low levels of viremia in 370	
chronic infection (controllers) have been shown to have enhanced immune responses in chronic 371	
infection7,81,82. However, whether early events in acute HIV infection reflect or contribute to long-372	
term control is unknown. In the hyper-acute monocyte responses (Fig. 4C), we found a small set 373	
of upregulated genes shared only by P3 and P4, including SLAMF7, whose activation was 374	
recently described to downregulate CCR5 on monocytes and reduced their infection capacity by 375	
HIV83, suggesting a potential difference in monocyte susceptibility and phenotype in these 376	
individuals during hyper-acute infection. Moreover, referring back to the initial cell type clustering 377	
of our data (Fig. S1), we noted that the peak response monocytes in P3 (0 weeks) clustered 378	
separately from other monocytes, and that P4 made up >75% of the anti-viral monocytes detected 379	
at 1-week post-infection. Identifying a potential correlate of future viral control otherwise obscured 380	
by bulk transcriptomics and sparse longitudinal sampling, we next searched for other unique 381	
immune responses enriched in either or both of the two controllers. 382	

 383	

Future controllers exhibit higher frequencies of proliferating CTLs and a precocious 384	
subset of NK cells before traditional HIV-specific CD8+ T cells 385	

 As CD8+ T cells are known to play a part in controlling chronic HIV infection82,84,85, we 386	
turned to the CTLs in our study to look for differences between the individuals who controlled 387	
infection long-term and those who did not. Through our module discovery approach, we found 388	
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that CTLs produced increasing levels of PRF1 and GZMB along the course of hyper-acute 389	
infection (Fig. 3C). Further unsupervised and directed approaches did not elucidate meaningful 390	
or significant differences in CTL responses across individuals by outcome of viral control (Fig. 391	
S10A-B and Table S7).  392	

Recently, we demonstrated that, in most individuals in the FRESH study, a majority of 393	
proliferating CTLs in hyper-acute infection are HIV-specific by tetramer staining86. Therefore, we 394	
turned to the proliferating T cells in our study to look for differences in response based on long-395	
term viral control. En masse, the proliferating T cells expressed similar levels of cytotoxic genes 396	
as non-proliferating CTLs (Fig. S10C). DE analysis highlighted genes associated with cell-cycle 397	
(e.g. STMN1, HIST1H1B, MKI67) and memory (e.g. IL7R, KLRB1) (see Fig. S10D and table S7) 398	
for proliferating and non-proliferating CTLs, respectively. While sparsely detected due to the 399	
method of library construction in Seq-Well, we did measure a limited number of TCR variable 400	
genes in the proliferating CTLs (Fig S10E). In fact, we note enrichment of TRBV and TRAV genes 401	
known to construct prevalent CDR3 sequences that bind common HIV epitopes87,88: TRBV28 402	
(QW9/FL8/KF11/KK10/NV9, c2 test p=2.4*10-26), TRAV4 (KK10, c2 test p=3.5*10-6), and TRBV20-403	
1 (KK10/KF11/GY9/NV9, c2 test  p=0.059). Our single-cell data here expand our recently 404	
published bulk RNA-Seq data on HIV-specific CTLs in this cohort89, but also enable us to elucidate 405	
heterogeneity in this proliferating cytotoxic response as a function of time.  406	

 Grouping proliferating T cells with the other CTLs, we sought to understand if these two 407	
controllers demonstrated differences in the frequency of proliferating T cells among the total CTL 408	
pool over time. Strikingly, both controllers (P3 & P4) displayed much higher frequencies of 409	
proliferating T cells within the first month of infection (Fig. 5A). While all four individuals developed 410	
proliferating T cells at 1-week post HIV detection, P3 and P4 exhibited a higher fraction of these 411	
cells 1 week after HIV detection (30-40%).  412	

 We next utilized unsupervised analyses to explore differences in proliferating T cell 413	
responses over time among individuals (Fig. 5B, Fig. S10F). Proliferating T cells captured at 1-414	
week post-infection strongly separated in PCA across both PC1 and PC2 (p < 0.001). Clustering 415	
over all proliferating T cells (see Methods), we identified four clusters of cells with distinct gene 416	
programs (see Fig. 5C and table S7): traditional CD8+ T cells (1-red), hyper-proliferative CD8+ T 417	
cells (2-green), naïve CD4+ T cells (3-cyan), and a subset of cells that is CD8– but TRDC+ and 418	
FCGR3A+ (CD16) (4-lilac). A recent scRNA-Seq study on cytotoxic innate-ness looked at 419	
cytotoxic gdT and NK cells in healthy humans, noting basal levels of TRDC in both cell-types21. 420	
To determine whether these TRDC+CD16+ cells were gdT or NK cells, we scored them, as well as 421	
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non-proliferating CTLs and NK cells, against gene signatures described in that study (Fig. S10G). 422	
Based on score similarity to NK cells, and the relative down-regulation of CD3 compared to the 423	
other proliferating T cell subsets (Wilcoxon rank sum test; CD3D:  424	
log(FC) = -0.895, q = 2.7x10-42; CD3G: log(FC) = -0.923, q = 8.9x10-37), we determine cluster 4 425	
(lilac) to be proliferating NK cells. Looking at the distribution of timepoints within each of these 426	
clusters, this NK cluster (4-lilac) contained the highest proportion of cells assayed at HIV detection 427	
and 1 week thereafter (Fig. 5D,E). Within these earliest proliferating NK cells, the majority were 428	
detected from P3 and P4. Together, these data suggest that individuals who go on control HIV 429	
infection without ART exhibit a subset of proliferative, cytotoxic NK cells before the majority of 430	
HIV-specific CD8+ T cells arise. Thus, investigating the classically induced cytotoxic cells in viral 431	
infection on a single-cell level revealed unappreciated heterogeneity in the anti-viral response, 432	
implicating innate immune responses in controlling infection. 433	

 434	

Discussion 435	

Here we have applied both unsupervised and directed approaches to a unique longitudinal 436	
human infection data set to characterize conserved immune response dynamics, as well as early 437	
cellular events associated with the individuals studied here who go on to control infection without 438	
treatment. Sampling prior to and immediately upon HIV infection, we assayed longitudinal PBMC 439	
samples in four individuals from a prospective cohort, the FRESH Study16,17 using Seq-Well18. 440	
This systems-level approach revealed parameters shared across all cell types examined (e.g., 441	
response to IFN), as well as subtle variations among cellular types and individuals missed in 442	
previous bulk studies of infection. Further, it defined cell-type specific responses (e.g., 443	
inflammatory induction of CD4+ T cells), and their interaction dynamics following infection. 444	
Moreover, leveraging the resolution and high-throughput capability of scRNA-Seq methods, we 445	
were able to uncover previously unappreciated cellular features in the PBMCs of two individuals 446	
who went on to control infection naturally, including subsets of poly-functional monocytes and 447	
proliferating NK cells limited to hyper-acute infection, that may correspond to better infection 448	
outcome. 449	

To systematically identify immune cells responding with similar temporal dynamics, we 450	
adapted WGCNA26,27 (Fig. 2A and see Methods) to discover modules of genes that significantly 451	
changed in expression within a given cell type over time. Cellular responses to infection can 452	
happen on the order of hours to days; therefore, even with the biweekly HIV testing in the FRESH 453	
Study, we anticipated these individuals would not align immune responses in absolute time. After 454	
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applying our module analysis, the strongest and most pervasive module across cell types and all 455	
individuals assayed was the interferon induced anti-viral response (Fig. 2D). While known to be 456	
a key factor in controlling HIV replication30,65 and the major response in NHP SIV infection 457	
models52,90, the timing of response and extent to which it pervades all peripheral cell subsets in 458	
humans has not yet been described. Of note, both controllers (P3 & P4) exhibited interferon 459	
response modules the week before peak viremia, consistent with the faster resolution of interferon 460	
response in natural SIV hosts compared to non-natural hosts46–49. Moreover, multiple modules 461	
from P3 & P4 uniquely contained APOBEC3A, shown to restrict HIV infection in myeloid cells91, 462	
and IFITM1 and IFITM3 which can inhibit HIV translation in transfected cells in-vitro92. 463	

Due to our ability to determine enriched modules within individual cells, we were able to 464	
unveil a second layer of regulation, which might otherwise be drowned out by the overwhelming 465	
IFN signature (Fig. 3F-H). This highlighted putative upstream drivers that are unique to CD4+ T 466	
cells, monocytes, NK cells, or shared amongst many cell types. Downstream genes (many 467	
shared) were significantly enriched for many known drivers of lymphocyte proliferation, 468	
emphasizing the presence of mounting large cytotoxic responses in more than just HIV-specific 469	
CD8+ T cells during acute infection. Some of these molecules were also upstream of CD4+ T cells, 470	
potentially increasing their susceptibility to infection (IL-15)69 and inducing maturation (IL-2)67 and 471	
differentiation (IL-4)93. Cell-type specific drivers, like IL-1B & TNF upstream of CD4+ T cells, also 472	
suggest T helper subset differentiation during this time frame70. However, the functional capacity 473	
of CD4+ T cells to coordinate productive CD8+ T cells during hyper-acute HIV infection has yet to 474	
be tested. Though we did not ascribe the relationships between all cell types and their immune 475	
modulators, this integrated multi-cellular analysis lays the foundation for future characterization 476	
of the complex, dynamic immune responses to an infection. A potential method to pinpoint the 477	
effects of the various cytokines produced in acute infection might utilize in-vitro assays that couple 478	
PBMCs from healthy individuals with and without autologously HIV infected CD4+ T cells.  479	

Empowered by our single-cell resolution and cognizant of the role HIV-specific T cells play 480	
in long-term control82,84,94, we were intrigued to find not only higher frequencies of proliferating 481	
CTLs in P3/P4, but also the presence of a subset of a previously unappreciated proliferating NK 482	
cells preceding the well-described HIV-specific responses (Fig. 5C-E), given the multi-faceted 483	
role of NK cells in viral control64. Assaying cells from controllers in-vitro showed that NK cells were 484	
equivalent to CD8+ T cells in inhibiting viral replication95; however recent work has demonstrated 485	
CD11b+CD57-CD161+Siglec-7+ NK cells to be more abundant in elite controllers compared to 486	
those who progress96. The proliferating NK cells measured here also express high levels of 487	
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CD161 (KLRB1), associated with the production of IFN-g in response to IL-12 and IL-1897. Antigen 488	
specific expansion of cytotoxic NK cells has been shown to occur in hCMV98,99, hantavirus100, and 489	
SIV101 as a “memory-like” response; however, we do not measure changes in NKG2C (KLRC1) 490	
here. Lacking the opportunity to assay previous viral exposure in these individuals, we cannot 491	
comment on whether these cells might be proliferating in response to a previously encountered 492	
antigen from HIV or a similar retrovirus. We hypothesize that a similar phenotype of proliferating 493	
NK cells may arise in response to re-encountering antigen after early ART. To test this, one could 494	
examine the killing capacity of NK and CD8+ T cells in-vitro from individuals treated at various 495	
stages of acute and chronic infection, given sample availability. 496	

 Collectively, our single-cell transcriptional study of hyper-acute and acute HIV infection in 497	
FRESH provides several key insights into the dynamics of host-immune responses to infection 498	
on a systems-level. It also affords a key reference data set for studying the earliest moments of 499	
viral infection after detection. While limited sample availability and the inability to recreate a 500	
prospective study like this (since immediate ART is now standard of care) preclude strong 501	
associations with clinical parameters across individuals, we are able to nominate potential early 502	
responses that may inform long-term viral control and thus guide HIV vaccine efforts. Although 503	
preliminary, many of these observations can be validated in NHP models via proper selection of 504	
natural and unnatural hosts/virus strains. Future work in FRESH will seek test the effects of early 505	
administered ART on these longitudinal HIV response dynamics, while work in other viral and 506	
bacterial infections in additional human cohorts will enable assessment of the broad utility of the 507	
methods and features described here. 508	
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 818	

Fig. 1: Longitudinal profiling of peripheral immune cells in hyper-acute and acute HIV-819	
infection by single-cell RNA-sequencing. (A) Representation of the typical trajectory of HIV 820	
viral load in the plasma during hyper-acute and acute HIV infection, and the timepoints sampled 821	
in this study. Since participants are tested twice weekly, there is an uncertainty of up to 3 days in 822	
where on the viral load curve the first detectable viremia occurs. The exact days sampled are 823	
available in table S1. (B) Viral load and CD4 T cell count for the four individuals assayed in this 824	
study. Dotted lines indicate a missing data point for the metric. (C) tSNE analysis of PBMCs from 825	



 25 

all individuals and timepoints sampled (n=65,842). Cells are annotated based on differential 826	
expression analysis on orthogonally discovered clusters. (D) tSNE in C annotated by timepoint 827	
(left) and individual (right). (E) Scatter plot depicting the correlation between cell frequencies of 828	
CD4+ and CD8+ T cells measured by Seq-Well and FACS. R-squared values reflect variance 829	
described by a linear model. * p < 0.05; ** p < 0.01; *** p < 0.001. 830	

831	
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 832	

Fig. 2: Gene module discovery reveals ubiquitous response to interferon with cell type 833	
specific features. (A) Schema depicting temporal gene module discovery (see Methods). This 834	
procedure is repeated for each major cell type (monocytes, CD4+ T cells, CTLs, proliferating T 835	
cells, NK cells, B cells, plasmablasts, and mDCs) on an individual-by-individual basis. (B) In P1, 836	
six gene modules across multiple cell types exhibit similar temporal profiles with peak module 837	
scores at the same timepoint as peak viremia is measured. (C) Number of occurrences of genes 838	
across the modules in B. (D) Module scores for interferon response modules in each individual. 839	
The timepoint where peak viral load occurs is indicated by a dotted line. (E) Luminex 840	
measurements of IP10 (left) and MIG (right) in matching plasma samples. Points are averages of 841	
duplicate measurements. 842	

843	
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844	
Fig. 3: Modules with sustained expression conserved among individuals suggest shared 845	
and cell type specific drivers of immune response. Module Scores (left), gene overlaps 846	
between modules (middle), and enriched pathways for each module (right) in (A) CD4+ T cells, 847	
(B) monocytes, (C) CTLs, (D) NK cells, and (E) proliferating T cells. (F) Network of predicted 848	
upstream drivers of modules in A-E. Nodes are colored by significance in each cell-type. Edge 849	
width and color reflect the number of shared genes (width) in the gene sets of the upstream drivers 850	
for a given cell-type (color; see Methods). (G) Median gene set scores for significantly temporally 851	
variant (p < 0.05) upstream drivers in P1. Scores are grouped by k-means clustering; k=5. (H) 852	
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Summary table of immune responses to related and distinct stimuli with similar temporal 853	
dynamics.854	
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Fig. 4: One individual who goes on to control infection presents a poly-functional subset 856	
of monocytes at HIV detection. (A) Inflammatory and anti-viral scores of monocytes in P3 (left) 857	
and P1 (right) derived from gene lists created from merging modules among individuals. Ellipses 858	
drawn at 95% confidence interval for cells from each timepoint. (B) Principal component analysis 859	
(PCA) of all monocytes from P3 (left) and P1 (right). Density of cells in PC1 vs PC2 space 860	
annotated by timepoint are depicted, and the top loading genes for PC1 and PC2 are also 861	
annotated. (C) Heatmap of differentially expressed genes between monocytes at the peak 862	
response timepoint (0 weeks/1 week) vs pre-infection. Arrows indicate genes specific to P3 (dark-863	
brown) and P1 (violet). (D) Enriched pathways for the differentially expressed genes in C, using 864	
the MSigDB Hallmark Gene Sets. (E) Viral load by RT-PCR of the plasma of the four individuals 865	
assayed out to 2.75 years. Controllers of HIV maintain levels of plasma viremia less than 1,000 866	
viral copies (vc)/mL. P1 initiated ART before the 2.3 year timepoint. 867	

868	
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 869	

Fig. 5: Future controllers exhibit higher frequencies of proliferating CTLs and a precocious 870	
subset of NK cells 1 week after detection of HIV viremia. (A) Proportion of proliferating T cells 871	
of total CTLs as a function of time and individual measured by Seq-Well. (B) PCA of proliferating 872	
T cells from all four individuals. Cells assayed from the 1-week timepoint strongly separate along 873	
PC1 and PC2; Mann Whitney-U Test, *** p < 0.001. (C) SNN clustering over the top 6 PCs reveals 874	
four sub-clusters (left) with distinct gene programs (right). (D) Percentage of cells in each sub-875	
cluster by timepoint. (E) Number of cells from each individual within the cells sampled at 0 weeks 876	
and 1 week in the NK cell cluster (4-lilac; black box in D). 877	


