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SUMMARY

Genome-wide association studies (GWAS) have re-
vealed risk alleles for ulcerative colitis (UC). To un-
derstand their cell type specificities and pathways
of action, we generate an atlas of 366,650 cells
from the colon mucosa of 18 UC patients and 12
healthy individuals, revealing 51 epithelial, stromal,
and immune cell subsets, including BEST4+ entero-
cytes, microfold-like cells, and IL13RA2+IL11+ in-
flammatory fibroblasts, which we associate with
resistance to anti-TNF treatment. Inflammatory fibro-
blasts, inflammatorymonocytes, microfold-like cells,
and T cells that co-express CD8 and IL-17 expand
with disease, forming intercellular interaction hubs.
Many UC risk genes are cell type specific and co-
regulated within relatively few gene modules, sug-
gesting convergence onto limited sets of cell types
and pathways. Using this observation, we nominate
and infer functions for specific risk genes across
GWAS loci. Our work provides a framework for inter-
rogating complex human diseases and mapping risk
variants to cell types and pathways.
714 Cell 178, 714–730, July 25, 2019 ª 2019 Elsevier Inc.
INTRODUCTION

Tissues function through the coordinated actions of diverse

epithelial, immune, and stromal cell types. Breakdown in any

compartment can lead to disease, either because of intrinsic

cell dysfunction or the compensatory actions of other cells

attempting to restore homeostasis. This interplay can make it

difficult to nominate the causal mechanisms that underlie dis-

ease. In the specific case of the colonic mucosa, disruptions

can lead to ulcerative colitis (UC), a subtype of inflammatory

bowel disease (IBD) (Xavier and Podolsky, 2007).

Known disease risk alleles highlight key pathways in the path-

ogenesis of IBD, including innate and adaptive immunity, gut

barrier function, and pathogen sensing and response (Liu

et al., 2015; Rivas et al., 2011). However, the underlying genes

at risk loci have not been mapped to their cells and pathways

of action. Moreover, although histological analysis following

endoscopy is the current standard of care (Magro et al., 2017),

it fails to capture fine details of disease—e.g., cell proportions,

cell type-specific expression, and cell-cell interactions—and

does not distinguish between pathways associated with chronic

inflammation versus disease restitution.

Single-cell RNA sequencing (scRNA-seq) is helping to

advance our understanding of human disease by comprehen-

sively mapping the cell types and states within a tissue,
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disentangling changes in the expression of gene programs from

those in cell frequencies, and connecting them through cell-cell

interactions (Tanay and Regev, 2017). Here we apply scRNA-seq

to UC, using intestinal biopsies collected fromhealthy individuals

and UC patients to generate and query a single-cell atlas of the

healthy and diseased colon.

RESULTS

scRNA-Seq Atlas of Colon Biopsies from Healthy
Individuals and UC Patients
We generated 366,650 high-quality single-cell transcriptomes

from 68 biopsies (each �2.4 mm2) from colonoscopic examina-

tions of 18 UC patients under different treatment regimens and

12 healthy individuals (Figure 1A; STAR Methods; Table S1).

We conducted the study in two phases: 115,517 single-cell pro-

files were collected from 34 colon biopsies of 7 UC patients and

10 healthy individuals as a training set (Figure 1A; STAR

Methods; Table S1); another 251,133 were then collected from

34 biopsies of 11 UC patients and 2 healthy individuals as a

test set.

To investigate the transitions between healthy and chronically

inflamed mucosa while mitigating patient-specific variability, we

collected paired samples from each subject in a single proced-

ure. For UC patients, these were endoscopically assessed as

adjacent normal tissue (‘‘non-inflamed’’) and inflamed or ulcer-

ated tissue (‘‘inflamed’’) (Figure 1A; STARMethods). To estimate

intra-subject variation, we obtained two location-matched sam-

ples (distance of �1–2 cm) from each of the 12 healthy subjects

as well as from both non-inflamed and inflamed regions of 3 UC

patients. We then separated the ‘‘epithelial’’ (EPI) and ‘‘lamina

propria’’ (LP) fractions from each sample and performed

scRNA-seq (STAR Methods). We confirmed that expression of

an inflammation-associated gene set increased from healthy to

non-inflamed to inflamed samples (Figure 1B).

A Comprehensive Census of 51 Cell Subsets and Their
Molecular Signatures
The single-cell profiles partitioned into 51 subsets by clustering

(Figure 1C, after correction for technical and biological variation;

STAR Methods), which we annotated by known markers (Fig-

ure 1D). The subsets were robust and reproducible because
Figure 1. Single-Cell Atlas of Colon Biopsies from Healthy Individuals

(A) Study design. See also Table S1.

(B) Confirmation of inflammation status. Shown is the mean expression of an infl

(green), and inflamed (red) biopsies (Wilcoxon test, *p = 0.05; **p = 0.01; ***p = 0

(C) Cell census. Shown is t-Stochastic Neighborhood Embedding (t-SNE) of cell

(D) Subset-specific markers. Shown is the expression of marker genes (rows) a

legend; STAR Methods).

(E) Reproducible cell subset distributions across samples (discovery and validati

derived from each healthy (blue), non-inflamed (green), or inflamed (red) sample.

(F) Epithelial differentiation. Shown is the inferred differentiation trajectory (STAR

(left) lineages.

(G–I) New colon cell subsets and their markers. Shown are fractions of expressing

marker genes (columns) across subsets (rows) (G and I) and representative image

immunofluorescence assay (IFA) of a colon tissue microarray (TMA; STAR Meth

white arrow) in healthy colon (H). Inset, 33 magnification; scale bars, 50 mm.

See also Figures S1 and S2 and Tables S1, S2, and S3.

716 Cell 178, 714–730, July 25, 2019
nearly all were represented by all specimens (Figure 1E) and pro-

portionally distributed across patients (Figures S1A and S1B).

The discovery and validation cohorts were highly congruent (Fig-

ures S1B–S1D), as were replicates collected from the same and

even different individuals within the same disease state (Fig-

ure S1E; STAR Methods).

The 51 subsets include 15 epithelial subsets, ordered along

the differentiation trajectory from intestinal stem cells (ISCs) to

mature cell fates (Haber et al., 2017; Figure 1F; STAR Methods).

They also include 8 fibroblast, 4 endothelial cell, 1 glial cell, 7

myeloid cell, 4 B cell, 10 T cell (CD4+ conventional T helper cell

[Tconv], regulatory T [Treg], CD8+, and gd), 1 innate lymphoid

cell (ILC), and 1 natural killer (NK) cell subsets (Figure 1C).

Missing cell types include submucosal enteric neurons, which

require isolation by single-nucleus RNA-seq (Habib et al.,

2016), plasmacytoid dendritic cells (DCs), and neutrophils

(Schelker et al., 2017). Each subset is supported by known and

novel markers (Figure 1D; Table S2), including transcription fac-

tors (TFs), G protein-coupled receptors (GPCRs), and cytokines

(Figures S2A–S2C; Table S3). In most cases, further sub-clusters

could not be distinguished by an additional round of clustering

(Table S2; STARMethods). Exceptions included immunoglobulin

A (IgA)+ and IgG+ plasma cells, and Treg cells co-expressing

TNFRSF4/OX40 and TNFRSF18/GITR, which may reflect acti-

vated versus resting Treg cells.

Characterization of BEST4+ Epithelial Cells and RSPO3+

Fibroblasts in the Healthy Colon
Our census revealed that enterocytes expressing BEST4 are

distinct from other epithelial cells (Parikh et al., 2019), and are en-

riched in genes related to pH sensing and electrolyte balance

(validated in situ; Figures 1G, 1H, and S1D). These include the

otopetrins 2 and 3 (OTOP2/3), proton channels that detect pH

and underlie sour taste perception (Tu et al., 2018); carbonic an-

hydrase VII (CA7), which catalyzes bicarbonate formation; and

bestrophin-4 (BEST4), which may export bicarbonate (Qu and

Hartzell, 2008). BEST4+ enterocytes comprised �1% of the ileal

epithelium from two Crohn’s disease (CD) patients (11,473 cells;

data not shown).

Multiple fibroblast subsets differ by expression of WNT/

bone morphogenetic protein (BMP) signaling genes, likely re-

flecting distinct positions along the crypt-villus axis (Powell
and Ulcerative Colitis (UC) Patients

ammation signature (STAR Methods) in cells from healthy (blue), non-inflamed

.001); boxplots: 25%, 50%, and 75% quantiles; error bars: SD.

s colored by cell subset (legend; STAR Methods).

cross cell subsets (columns) ordered by cell lineage relationships (top, color

on sets). Shown are fractions of cells (y axis) in each cell subset (bars) that are

Bottom: total cell count in the subset (see also Figure S1A).

Methods) for epithelial cell subsets including absorptive (right) and secretory

cells (dot size) andmean expression level in expressing cells (dot color) of select

s of combined single-molecule fluorescence in situ hybridization (smFISH) and

ods) for BEST4+ enterocytes (left, white arrow) and RSPO3+ fibroblasts (right,
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Figure 2. Changes in Cell Composition and Differentiation in UC

(A) Cell proportion changes. Shown are significant changes in cell frequency (y axis) for non-inflamed (light blue) and inflamed (white) samples relative to healthy

(dark blue) (Dirichlet-multinomial regression, *adjusted p = 0.05, **adjusted p = 0.01, ***adjusted p = 0.001); error bars: SEM.

(B) Relative reduction in plasma cells among B cells in inflamed colon. Left: representative images of combined smFISH and IFA of plasma cells in TMA from

healthy (left) and inflamed (center) human colon; yellow arrows, plasma cell; red arrows, B cell; scale bars, 50 mm; inset, 32.5 magnification. Right: fraction of

plasma cells of total B cells (y axis) in the field of view (n = 9 biopsies per condition; *p < 0.05, t test; error bars: SEM).

(C) Expansion of IAFs in inflamed colon. Left: representative images of combined smFISH and IFA of IAFs in TMA from healthy (left) and inflamed (center) human

colon; scale bars, 50 mm. Right: number of IAFs (y axis) in the field of view (100 mm2 per image; n = 9 and n = 7 healthy and inflamed biopsies, respectively;

***p < 5 3 10�4, t test; error bars: SEM).

(D) Reduction in epithelial progenitors with disease. Shown is the distribution of diffusion pseudotimes (STARMethods) for absorptive (top) and secretory (bottom)

epithelial cells, colored by disease state, both significantly shifted to later pseudotimes during disease (likelihood ratio test, p = 10�4).

See also Figure S3.
et al., 2011; Shoshkes-Carmel et al., 2018). Some are enriched

for WNT2B, WNT4, and DKK3, suggesting that they reside

near the crypt, whereas others are enriched for BMP4, BMP5,

and WNT5A/B and may reside near the villus (Figure 1I). Many

of these genes are reported markers of subepithelial telocytes,

a rare population of fibroblasts that support the epithelium

(Shoshkes-Carmel et al., 2018); however, in our data, they are

broadly distributed across all subsets (e.g., FOXL1, DKK3, and

WNT5B; Figure 1I).

One subset ofWNT2B+ fibroblasts may support the ISC niche

by expression of R-spondin-3 (validated in situ, Figures 1G–1I),

which interacts with the ISC receptor LGR5 (de Lau et al.,

2011). RSPO3+ fibroblasts express other WNT/BMP signaling

genes and several distinct chemokines (Figures 1G and 1I),

which may recruit immune cells to the ISC niche (Biton et al.,

2018). They are also enriched for genes predictive of poor prog-

nosis in colorectal cancer (CRC) (Calon et al., 2015) and may
support tumor growth by promoting a stem-like microenviron-

ment (Figure S5A).

Remodeling of the Colon’s Cellular Composition during
Disease
The proportions of many cell subsets significantly differed in

non-inflamed or inflamed samples versus healthy controls, using

both a multivariate test accounting for compositional depen-

dencies (Figure 2A) and univariate tests (Figures S3A and S3B;

STAR Methods). These include many known changes in UC

patients, such as increases in the proportions of mast cells

(King et al., 1992), CD8+IL-17+ T cells (Tom et al., 2016), and

Treg cells (Holmén et al., 2006; Figure 2A, S3A, and S3B).

Microfold (M) cells are typically associated with lymphoid tis-

sue in the human small intestine, where they are important for

recognition of the gut microbiota (Mabbott et al., 2013). In the

colon, M-like cells were rarely found in healthy individuals but
Cell 178, 714–730, July 25, 2019 717



expanded 17-fold during inflammation (validated in situ; Figures

S3A and S3D). They highly express several chemokines (e.g.,

CCL20 and CCL23; Figure 1G), suggesting involvement in re-

cruiting immune cells to sites of inflammation.

Mucus layer defects (Xavier and Podolsky, 2007) were not ex-

plained by changes in expression (below), suggesting that they

may arise post-transcriptionally. Although the frequency of

goblet cells did not change, goblet cell progenitors were reduced

during inflammation, both as a discrete cell subset (Figure 2A)

and along the continuum of differentiation (Figures 1F and 2D;

STAR Methods).

Although the overall number of immune cells increased with

disease (Danese and Fiocchi, 2011), within the B cell lineage,

there was a shift from plasma to follicular (FO) cells (validated

in situ; Figures 2A and 2B). Among plasma cells, the frequencies

of IgA+ relative to IgG+ cells decreased (Figure S3C), suggesting

that inflammation is associated with immunoglobulin class

switching (Scott et al., 1986).

An Inflammation-Associated Fibroblast Subset Is
Unique to the UC Colon
Although most fibroblast subsets were present in both healthy

individuals and UC patients, a subset we termed inflammation-

associated fibroblasts (IAFs) expanded 189-fold in inflamed tis-

sue of some patients (>1% of LP cells, validated in situ; Figures

2A and 2C). IAFs are enriched for expression of many genes

associated with colitis, fibrosis, and cancer, including IL11,

IL24, and IL13RA2 (Figure 1G). Interleukin-11 (IL-11) is a regu-

lator of fibrosis in mice and potentially humans (Schafer et al.,

2017). IAFs comprise WNT2B+ and WNT5B+ subsets (Fig-

ure S3E), suggesting that they may reflect a distinct state along

the crypt-villus axis.

IAFs express markers of cancer-associated fibroblasts (CAFs)

(Figure 1G), including FAP, TWIST1, and WNT2 (Erez et al.,

2010; Kramer et al., 2017). The expression levels of IAF markers

are correlated between IAFs and 414 bulk RNA-seq CRC sam-

ples (Cancer Genome Atlas, 2012; Figure S5B; Spearman’s

r = 0.67), more than controls (r = 0.33; p < 10�10; Mann-Whitney

test), suggesting an expansion of IAFs in tumors (also consistent

with increased expression of IAF markers in CRC versus con-

trols; Figure S5B).

Most Expression Changes during Disease Are Shared by
Non-Inflamed and Inflamed Tissue
To identify changes in expression associated with disease,

we modeled expression as the sum of components reflecting

cell subset, disease state (healthy, non-inflamed, or inflamed),

and technical covariates while correcting for ambient RNA

contamination (Macosko et al., 2015; Figure S1F; STAR

Methods). We distinguished between changes shared across

cell subsets in epithelial, innate, or adaptive compartments

(Figures 3A–3C and S4A–S4C, Table S4) and those unique to

each subset (Figures 3D–3F and S4D–S4F; Table S4; STAR

Methods).

Despite their endoscopic assessments, non-inflamed and in-

flamed tissue had similar differentially expressed (DE) gene sig-

natures (Figure 3G; Table S4), suggesting that the transcrip-

tional signature of UC precedes inflammation or persists after
718 Cell 178, 714–730, July 25, 2019
resolution. Across epithelial cells, DE genes reflect attempts

to restore homeostasis by activating innate immunity, such as

antimicrobial and antioxidant defense pathways, mucin biosyn-

thesis, and major histocompatibility complex (MHC) class II

machinery (validated in situ; Figures 3A, 3D, and 3H; Biton

et al., 2018; McDonald and Jewell, 1987). Within the stroma,

fibroblasts induced genes for inflammation, fibrosis, and

tissue repair (Gieseck et al., 2018), whereas changes in endo-

thelial cells supported tissue vascularization (Figures 3B and

3E). Among immune cells, myeloid and T cells activated co-

stimulatory and co-inhibitory genes, and B cells upregulated

genes for IgG class switching and affinity maturation (Figures

3C and 3F).

Concerted Metabolic Shifts in Epithelial Cells during
Inflammation
Comparison between non-inflamed and inflamed UC tissue (Fig-

ures S4A–S4F; Table S4) revealed several metabolic changes

in epithelial cells accompanying inflammation. For example,

changes in purine metabolism (e.g., XDH and URAD) may yield

uric acid, associated with epithelial damage (Chiaro et al.,

2017). Epithelial cells also induced the kynurenine pathway (Fig-

ure 4A), associated with disease severity (Sofia et al., 2018).

GPR35, a kynurenic acid receptor, is a putative risk gene (Huang

et al., 2017).

Mapping changes in 239 Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways during inflammation (Figures 4B

and S5C; STAR Methods) revealed other metabolic alterations

in enterocytes, including a shift from oxidative phosphorylation

to glycolysis, induction of arginine biosynthesis enzymes (e.g.,

NOS2 and ASS1), and downregulation of enzymes for the degra-

dation of branched-chain amino acids, particularly AUH, a puta-

tive risk gene (Liu et al., 2015). Enterocytes also induced HIF1

pathways, a contributor to the glycolytic shift in monocytes (Kelly

and O’Neill, 2015). These changes may be driven by impaired

production of short-chain fatty acids by gut bacteria (den Besten

et al., 2013) because epithelial cells downregulated pathways

for b-oxidation and the metabolism of butyrate and propionate

but upregulated pathways for dietary fatty acids (e.g., a-lino-

leic acid).

Induction of a Pro-Inflammatory IL-17 Response and
Immune Checkpoints in T Cell Subsets
Among T cells, several CD4+ subsets upregulated IL17A (Fig-

ure 3C), which may reflect both a per-cell increase in IL17A

expression as well as an expansion of Th17 cells. Surprisingly,

a CD8+ subset had the strongest overall induction of IL17A

across both disease states (Figures 4C–4E). In situ analysis re-

vealed both CD4� and CD4+ cells that co-express CD8 and

IL17A (Figures 4D and 4E). Although CD8+IL-17+ T cells have

been reported (Cortez et al., 2014; Srenathan et al., 2016),

CD4+CD8+IL-17+ T cells are largely uncharacterized. These cells

also activated cytotoxic programs and genes related to Th17

pathogenicity in mice (e.g., RBPJ and IL23R; Figures 3F and

4C; Gaublomme et al., 2015), which may aggravate tissue dam-

age. Most subsets of T cells induced co-stimulatory and co-

inhibitory programs (Figure 4C), consistent with attempts to

suppress immune activation (Attanasio and Wherry, 2016).
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Figure 3. Shared Lineage-Specific and Cell-Specific Expression Changes in Non-inflamed and Inflamed Tissues

(A–G) Lineage- and cell-specific expression changes are shared by non-inflamed and inflamed versus healthy tissue.

(A–F) DE genes shared by the disease states (STARMethods) with their effect size during inflammation (discrete DE coefficient, x axis) and statistical significance

(y axis). Select genes are highlighted; all marker genes are reported in Table S2.

(A–C) Shared changes among multiple cell subsets within (A) epithelial, (B) innate (stromal and myeloid), or (C) adaptive compartments.

(D–F) Unique changes in specific cell subsets within epithelial (D), innate (E), and adaptive (F) compartments.

(G) Discrete DE coefficients estimated for non-inflamed (x axis) and inflamed (y axis) samples versus healthy samples for genes that were significantly DE in at

least one disease state (96,445 gene-by-subset coefficients, Spearman’s r = 0.71, p < 10�16).

(H) Upregulation of epithelial MHC class II expression in inflamed colon. Shown are representative images of combined smFISH and IFA of epithelial cells from

TMA of healthy (left) and inflamed (right) human colon. Scale bars, 50 mm; inset, 35 magnification; dashed line, HLA-DRA+ epithelial cell.

See also Figure S4 and Table S4.
TNF Expression Shifts to Treg, FO B, and CD8+IL-17+

T Cells during Inflammation
Monoclonal anti-TNF antibodies are a breakthrough therapy for

IBD, but 30% of IBD patients do not respond, and many acquire

resistance (Rutgeerts et al., 2004). Tumor necrosis factor (TNF)

expression shifted during UC, with a prominent role for Treg cells.

Baseline expression of TNF per cell was highest in CD8+ LP and

activated CD4+Foshi T cells, but in inflamed tissue, TNF was

induced in Treg and FO B cells (validated in situ; Figures 5B

and S5D). When estimating the total amount of TNF expressed

by each cell subset (Figure 5A), Treg cells accounted for 1% of
TNF expression in healthy tissue but over 14% during inflamma-

tion (second only to activated CD4+ T cells).

IAFs and Inflammatory Monocytes Are Associated with
Resistance to Anti-TNF Therapy
One of the most enriched genes in IAFs is OSMR, a putative

risk gene (Liu et al., 2015), and the receptor for Oncostatin M

(OSM), a cytokine that predicts anti-TNF response (West et al.,

2017).OSM andOSMR are thought to be expressed by unknown

myeloid and stromal cells, respectively (West et al., 2017). OSM

was most enriched in inflammatory monocytes and DC2s,
Cell 178, 714–730, July 25, 2019 719
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Figure 4. Cell-Specific Expression Changes in UC Highlight Metabolic Reprogramming in Epithelial Cells

(A) Induction of the kynurenine pathway in epithelial cells in UC. Shown are DE genes (rows) from the kynurenine pathway (left) in inflamed versus healthy samples

across cell subsets (columns). Dot size, fraction of expressing cells in healthy (gray outline) or inflamed (black outline) samples; dot color, significant DE model

coefficients (q < 0.05, Model-based Analysis of Single Cell Transcriptomics (MAST) hurdle model, discrete coefficient).

(B) Metabolic reprogramming of enterocytes in UC. Shown are expression changes of KEGG pathways (rows) captured by a mixed linear model (color bar) in

inflamed versus healthy samples for epithelial subsets (all subsets in Figure S5C). black outlines, q < 0.05.

(C) CD8+IL-17+ T cells induce IL17A/F, IL23R, and cytotoxic, co-stimulatory, and co-inhibitory programs in UC. Shown is the distribution of gene and program

expression (y axis) in T cells (x axis) from healthy (left), non-inflamed (center), and inflamed (right) samples (Wilcoxon test, *p = 0.05, **p = 0.01, ***p = 0.001);

crossbar: mean.

(D) IL17A expression by CD4+CD8+ cells. Shown are representative image of combined smFISH and IFA of CD4, CD8, and IL17A in inflamed human colon TMA

(left), showing (inset) CD4+CD8�IL17A+ (yellow outlines; top panels, from the yellow inset) and CD4+CD8+IL17A+ (red outlines, bottom panels, from the red inset)

cells. Insets, 35 magnification.

(E) Number ofCD4�CD8+IL17A+ orCD4+CD8+IL17A+ cells in the field of view (250 mm2). n = 5 samples per condition (*p < 0.05, ***p < 10�4, t test; error bars: SEM).

See also Figure S5.

720 Cell 178, 714–730, July 25, 2019
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Figure 5. IAFs and Monocytes Are Associated with Anti-TNF Drug Resistance via OSM Signaling

(A and B) Treg cells become major sources of TNF expression in UC.

(A) Fraction of total TNF transcripts (mean across samples, y axis) expressed by each cell subset in healthy, non-inflamed, and inflamed samples (x axis). Top

expressing subsets are highlighted (legend).

(legend continued on next page)
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whereasOSMRwasmost enriched in IAFs (validated in situ; Fig-

ure 5C). Together with the expansion of these subsets during

inflammation, this led us to hypothesize that cellular remodeling

of the colon may explain, in part, the relationship between OSM

and drug resistance.

We therefore scored cell subsets for gene signatures of anti-

TNF resistance and sensitivity based on a meta-analysis of

bulk expression data from 60 responders and 57 non-re-

sponders to therapy (Wang et al., 2016; STAR Methods). The

drug resistance signature was strongly enriched in IAFs, inflam-

matory monocytes, and DC2 cells (Figures 5D and 5E) and

the drug sensitivity signature in epithelial cells (Figure 5D). The

three genes most associated with drug resistance—IL13RA2,

TNFRSF11B, and IL11—are IAF markers that are rarely ex-

pressed in other cells (Figure 5E). An inverse analysis, using

the IAF gene signature to infer the pre-treatment levels of IAFs

in bulk expression data from 20 drug responders versus 27

non-responders (Figure 5F; STAR Methods), confirmed that

IAFs are enriched in patients who are resistant to anti-TNF.

Therefore, IAFs may be implicated in the OSM-mediated resis-

tance reported by West et al. (2017).

Potential resistance mechanisms are that OSM synergizes

with TNF (West et al., 2017) or phenocopies it. To test these hy-

potheses, we examined the relationship between TNF and OSM

signaling across cell subsets. The signatures were strongly

correlated across cell subsets (even after removing shared

genes), and both were correlated to the drug resistance signa-

ture (Figure 5G). This suggests that OSMphenocopies TNF, acti-

vating downstream targets in IAFs. IAFs and inflammatory

monocytesmay thus compensate during TNF blockade, contrib-

uting to resistance.

Rewiring of Cell-Cell Interactions via Inflammation-
Associated Cell Subsets during Disease
To more generally chart the rewiring of cell-cell interactions dur-

ing colitis, we mapped receptor-ligand pairs (Ramilowski et al.,

2015) onto cell subsets to construct a putative cell-cell interac-

tion network across disease states (Figures 6A–6C), and identi-

fied pairs of cell subsets with significantly more receptor-ligand

connections than in a null model (STAR Methods).

Healthy interactions delineated distinct cellular compartments

(Figure 6A), whereas DE genes during disease targeted inter-
(B) TNF expression by Treg cells during inflammation. Left: representative image of

TMA. FOXP3+IL10+TNF� (yellow outlines; top right, from the yellow inset) and F

highlighted. Inset, 35 magnification; blue dashed lines, crypt position in the tissu

samples per condition (**p < 0.005, t test; error bars: SEM).

(C) OSM and OSMR expression by MHCII+ myeloid cells and IAFs, respectively.

healthy (left) and inflamed (right) human colon. Top: MHC class II+ myeloid cells

arrows. Scale bars, 50 mm. Inset, 35 magnification.

(D–G) IAF, inflammatory monocyte, and DC2 subsets are associated with anti-TN

(D) Distribution of signature scores (x axis) for anti-TNF resistance (left) and sens

(E) Mean expression level (color) and fraction of cells (dot size) expressing genes in

bar) in select cell subsets (rows). Arrows, genes whose highest expression is in I

(F) Distribution of signature scores for cell subsets (x axis) in bulk RNA-seq (Arijs

sponders, and healthy controls (Wilcoxon test, ***p < 0.001); boxplots: 25%, 50%

(G) Signature scores (mean log2[TP10K+1]) for TNF signaling (KEGG) (x axis) v

signaling (right, y axis) in each cell subset (dots) labeled by lineage (color) and m

See also Figure S5.
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lineage crosstalk and reduced compartmentalization (Figures

6B and 6C), with UC-associated subsets acting as key network

hubs (Figure 6D). In healthy mucosa, interactions largely re-

flected gut homeostasis (e.g., DC1 cells and T cells; Figure 6A;

p < 0.05). Conversely, non-inflamed interactions were enriched

between epithelial cells and fibroblasts and T cells (Figure 6B;

all p < 10�4), whereas inflamed tissue showed re-wiring of inter-

actions between B cells and T cells and macrophages and

CD8+IL-17+ T cells (Figure 6C; all p < 10�4). UC-associated sub-

sets (e.g., M-like cells, IAFs, and inflammatory monocytes) were

the most central nodes in the network (Figure 6D), indicating that

they mediate signals between diverse cell subsets.

Cell-Cell Interactions Predict the Infiltration,
Proliferation, and Differentiation of Cell Subsets during
Inflammation
We hypothesized that shifts in the proportions of cell subsets

could be explained by changes in cell-cell interaction genes ex-

pressed by other cells. To test this, we queried all cell subset

pairs, examining, for each receptor-ligand pair, whether the li-

gand’s expression level in one cell subset was correlated across

samples with the proportions of the cell subset expressing its re-

ceptor (including autocrine interactions). This analysis uncov-

ered hundreds of significant interactions (Figure 6E; Table S5;

STAR Methods).

For example, IL18 upregulation by enterocytes during inflam-

mation is correlated with increased proportions of Treg cells,

which express its receptor IL18R1 (Figure 6E; Spearman’s

r = 0.68). In mice, IL-18 both inhibits Th17 differentiation and al-

lows for Treg cell-mediated control of gut inflammation (Harrison

et al., 2015). However, the role of epithelial cells in recruiting Treg
cells to the colon is largely unknown. The frequency of entero-

cytes, which express IL22RA1, was correlated with the expres-

sion by CD4+ activated Foshi T cells of IL22, which regulates

intestinal regeneration (Pelczar et al., 2016; Figure 6E; Spear-

man’s r = 0.55). We validated this interaction in human colon

spheroid culture, where incubation with IL-22 induced an

expression program that was significantly enriched in entero-

cytes versus ISCs (Figure S6A; p < 10�10; Wilcoxon test).

Other factors promote recruitment of immune cells (e.g.,

CXCL12 for B cells) and expansion of stromal cells (e.g., PDGFD

for pericytes andOSM for IAFs) or are autocrine signals that may
combined smFISH and IFA of FOXP3, IL10, and TNFA in inflamed human colon

OXP3+IL10+TNF+ (red outlines; bottom right, from the red inset) Treg cells are

e. Right: number of FOXP3+IL10+TNF+ cells in the field of view (250 mm2). n = 5

Shown are representative images of combined smFISH and IFA of TMA from

(i.e., inflammatory monocytes or DC2s), yellow arrows. Bottom: IAFs, white

F resistance.

itivity (right) in select cell subsets (y axis); crossbar: mean.

the anti-TNF resistance signature (columns, ordered by signature rank, bottom

AFs.

et al., 2009) from human colon biopsies (y axis) of drug responders, non-re-

, and 75% quantiles; error bars: SD.

ersus drug resistance (left, y axis), drug sensitivity (center, y axis), and OSM

ean proportion across samples (size).
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Figure 6. Rewiring of Cell-Cell Interactions Explains Shifts in Cellular Proportions during Disease
(A–C) Increased decompartmentalizationwith disease. Shown are cell-cell interaction networks estimated in (A) healthy, (B) non-inflamed, and (C) inflamed tissue.

Nodes, cell subsets annotated by lineage (color) and mean proportions (size). Edges connect pairs of cell subsets with a significant excess of cognate receptor-

ligand pairs expressed (light gray, p < 0.05) or DE (dark gray, p < 0.05) in a disease state relative to a null model (STAR Methods; Table S5).

(D) Colitis-associated cell subsets are central nodes in the interaction networks. Shown is the mean betweenness centrality (x axis) for each cell subset (y axis)

across healthy, non-inflamed, and inflamed networks, showing the 10 highest-ranked cell subsets and the mean across all other subsets (bottom bar).

(E–G) Receptor-ligand interactions explain changes in cell proportions.

(E) Each panel shows, for a pair of cells connected by a receptor-ligand interaction, the mean expression level of the ligand in one cell subset (x axis)

and the logit-transformed proportion of the cell subset expressing the receptor (y axis) in each sample, labeled by disease state (color). Dashed line, best

linear fit.

(F) Example LASSO model explaining the change in CD8+IL-17+ T cell proportions across samples as a function of positive (dark arrows) and negative (light

arrows) relationships with ligands (edge label) expressed by other cell subsets colored by lineage.

(legend continued on next page)
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regulate cell survival, proliferation, or death (e.g., MST1 for

BEST4+ enterocytes and TNFSF10 for post-capillary venules)

(Figure 6E). Last, we developed a least absolute shrinkage and

selection operator (LASSO) regression model to identify circuits

spanning multiple cell types (Figures 6F, 6G, S6B, and S6C;

STAR Methods). For example, CD8+IL-17+ T cell proportions

are explained by a combination of autocrine and paracrine inter-

actions involving epithelial cells, T cells, fibroblasts, and glia

(Figure 6F).

Many IBD Risk Genes Are Cell Type or Lineage Specific
and Differentially Expressed in Disease
To interrogate IBD genetics using scRNA-seq, we studied 151

risk loci for IBD and UC spanning 346 candidate risk genes

(STAR Methods). For most loci, the gene underlying the associ-

ation signal is unknown; however, in some cases, it is possible to

implicate a single gene because it contains a fine-mapped or

nonsynonymous coding variant or is resolved to a region of link-

age disequilibrium with no other genes. Using this approach, we

compiled a set of 57 ‘‘GWAS-implicated’’ risk genes that have a

high likelihood of being causally associated with IBD (Table S6;

STAR Methods).

Mapping these 57 GWAS-implicated risk genes onto our atlas

revealed 29 that were enriched in specific lineages (Figure 7A)

and 36 that were significantly DE during disease (Figures S7A

and S7B). In addition to known associations (e.g., NKX2-3 in

microvascular cells and HNF4A in enterocytes) (Stegmann

et al., 2006; Wang et al., 2000), we discovered several new rela-

tionships (Table S6). For example, intelectin 1 (ITLN1), a lipid raft

protein that localizes to the epithelial brush border (Wrackmeyer

et al., 2006), is enriched in immature goblet cells. Some cell sub-

sets are enriched for the expression of several GWAS-implicated

risk genes (Figure 7B). Notably, M-like cells express many risk

genes at higher levels than other cells (e.g., NR5A2, CCL20,

and JAK2; Figure 7A; Table S6), suggesting that M-like cell

dysfunction may play an important role in the disease.

Co-variation of Gene Expression within a Cell Type
Helps Predict Functions for IBD Risk Genes
We hypothesized that variation in gene expression across single

cells of the same subset can power us to infer the functions of

IBD risk genes. Past approaches often use ‘‘guilt by association’’

across bulk tissue samples but cannot distinguish changes in

expression from changes in cell proportions. In contrast, we

measured the covariation of genes across single cells within a

cell subset, allowing us to isolate co-regulated processes in

those cells (Tanay and Regev, 2017; STAR Methods).

In this way, we constructed gene modules for the 57 GWAS-

implicated IBD risk genes in all expressing cell subsets and

annotated them with putative functions (Table S6; STAR

Methods). For example, within healthy epithelial cells, the

C1orf106 module was enriched for tight junction and adherens
(G) The fraction of variance (y axis) in the proportion of each cell subset (x axis)

Methods) and distribution of this statistic in 100 null models (black dots; STAR M

ordered from left by decreasing fraction of variance explained.

See also Figure S6 and Table S5.
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junction genes (q < 10�6 and 10�2, respectively; Fisher’s exact

test). We recently showed that C1orf106 is involved in cell-cell

junctions (Mohanan et al., 2018).

Multiple IBD Risk Genes Co-localize in Shared Gene
Modules, Revealing Key Pathways in IBD
In many cases, multiple putative IBD risk genes were members

of the same gene module, allowing us to define 10 ‘‘meta-

modules’’ spanning over 50% of GWAS-implicated IBD risk

genes, which may reflect key disease pathways (empirical

q < 0.05; Figure 7C; Table S7; STAR Methods). For example,

the PRKCB meta-module in healthy macrophages contains 5

other risk genes (GPR65, ADCY7, PTGER4, PTPRC, and

SH2B3) and may regulate macrophage activation through cyclic

AMP (cAMP) signaling. In addition, the JAK2 meta-module in

UC-associated M-like cells contains 4 other risk genes

(CCL20, PTGER4, SH2B3, and AHR) and may regulate TNF

signaling in M-like cells.

Single-Cell Expression and Co-expression Help
Nominate Causal Genes across GWAS Loci
The functional coherence of IBD risk genes suggests that single-

cell expression or co-expression can help pinpoint genes that

underlie the signal of association at loci with multiple candidate

genes. To this end, we identified 20 IBD and UC risk regions

(each spanning more than 1 gene) whose candidate gene sets

contain a GWAS-implicated risk gene, which we term the ‘‘cor-

rect’’ gene for that region (STARMethods). For each such region,

we then tested whether the degrees of (1) expression, (2) differ-

ential expression, or (3) co-expression with other candidate

genes (iteratively defined across loci; STAR Methods) could

recover the ‘‘correct’’ risk gene for the region, relative to a null

model in which a gene is randomly selected (STAR Methods).

The null model had 33% accuracy, which did not improve

when we selected the gene with the largest DE coefficient in

either disease state (Figure 7D). However, our predictions signif-

icantly improved when we selected the gene with the highest

expression in any cell subset (Figure 7D; 55% accuracy, empir-

ical p = 0.03) or belonging to the largest module of other candi-

date genes (Figure 7D; 63% accuracy, empirical p = 0.001). For

CD loci, no method significantly outperformed the null model

(Figure 7D), suggesting that the unique risk genes for UC and

CD are active in distinct locations or only in diseased tissue.

Finally, we used this co-expression approach to nominate

causal genes across all IBD/UC risk loci, including 56 for which

the genes driving the association are unknown (Figure 7E; Table

S7). We recovered many known IBD and UC risk factors (e.g.,

HNF4A, IFIH1, and GPR35) but failed to identify others (e.g.,

RNF186; Figure 7E), highlighting the limitations of our approach

(Discussion). In addition, this analysis yielded predictions for 53

genes that were not in the GWAS-implicated set, including

RORC, ITGAV, and SMURF1 (Figure 7E).
explained by a LASSO model of cell-cell interactions as in (F) (red dot; STAR

ethods). Only subsets with a significant model (empirical p < 0.05) are shown,
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Figure 7. Modules of Co-regulated Risk Genes Help Predict Genes, Pathways, and Cell Types Targeted by IBD

(A) Cell type-specific expression of putative IBD risk genes. Shown is the mean expression of GWAS-implicated IBD risk genes (columns) across cell subsets

(rows) that were identified as cell- or lineage-specific in both healthy andUC cells (left), only in healthy cells (center), or only in UC cells (right). Asterisks, geneswith

significantly changed specificity between health and UC.

(B) Induction of putative IBD risk genes in specific subsets in disease. Shown is the mean expression of GWAS-implicated IBD risk genes across cell subsets

(marked by lineage, color) in healthy (x axis) and inflamed (y axis) samples.

(C) Functional annotation of putative IBD risk genes by co-expression meta-modules within a cell subset. Shown are the number (bottom x axis) and percent (top

x axis) of GWAS-implicated IBD risk genes captured (solid line) by successive addition of each meta-module seeded by an IBD risk gene (y axis) using

(legend continued on next page)
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DISCUSSION

By leveraging scRNA-seq in a clinical context, we assessed

cellular composition, gene expression, cell-cell interactions,

and IBD risk gene pathways in specific cell subsets from intesti-

nal biopsies. Although distinguishing cause from effect is chal-

lenging, relating single-cell data to clinical responses (e.g.,

IAFs), cell-cell interactions (e.g., enterocytes and T cells),

or risk gene expression (e.g., M-like cells) can help inform dis-

ease etiology and highlight new opportunities for therapeutic

intervention.

M-like cells were rarely detected at baseline but expanded

during inflammation and acted as hubs in the cell-cell interaction

network (Figure 6D; S3A and S3D). This expansion may reflect

tertiary lymphoid tissue or sentinel cells (Mabbott et al., 2013).

M-like cells had the highest expression of GWAS-implicated

risk genes (Figures 7A and 7B), including CCL20, whose expres-

sion was correlated to Treg cell frequencies across samples

(Table S6). They had the largest module of predicted risk genes

(Table S7), enriched in endocytosis and Th17 differentiation

genes (q < 10�3, Fisher’s exact test), which may reflect transcy-

tosis and delivery of antigens.

CD8+IL-17+ T cells and Tregs expand from healthy to non-in-

flamed to inflamed tissue (Figure 2A) and becomemajor sources

of IL-17 (Figure 4C) and TNF (Figure 5A,B) during inflammation,

respectively. The former may contribute to T cell pathogenicity

and tissue damage (Figures 4D and 4E; 66% co-express CD4).

Although the latter may have adopted an effector-like state,

they are still more enriched for Treg cell markers (e.g., FOXP3,

CTLA4, and IL10) than TNF– Treg cells (data not shown). Future

work will determine whether TNF+ Treg cells contribute to disease

pathology or anti-TNF resistance (Atreya et al., 2011), as well as

the role of CD8+ T cell plasticity in gut inflammation.

OSM signaling was implicated in anti-TNF resistance via un-

known myeloid and stromal cell types (West et al., 2017). Here

we show that inflammatory monocytes and IAFs may mediate

resistance via expression of OSM and OSMR, respectively (Fig-

ure 5D). In particular, IAFs were enriched in pre-treatment sam-

ples from anti-TNF non-responders (Figure 5F). In addition, we

identified that OSM phenocopies TNF, which may explain anti-

TNF resistance. Future work will determine whether IAFs are a

robust biomarker of drug response or whether combining anti-

TNF drugs with inhibition of IAF cytokines and/or receptors can

reduce anti-TNF resistance in UC patients.

IAFs uniquely express IL11, a potential therapeutic target for

fibrosis (Schafer et al., 2017), suggesting involvement in gut

fibrosis. Because they express crypt-associated (WNT2B+) and

villus-associated (WNT5B+) markers (Figures 1I and S3E), IAFs

may reflect a distinct fibroblast state. IAFs express several
healthy (blue) or UC (red) cells relative to a null model (dashed line). Left labels,

meta-module.

(D and E) Meta-modules help nominate causal IBD risk genes from GWAS risk lo

(D) Mean number of correct predictions (left y axis) andmean percent accuracy (rig

to CD (right) for several methods based on scRNA-seq relative to the null model

(E) Nominated risk genes. Shown are loci containing GWAS-implicated IBD risk g

single gene (gold), and all other loci (green). Incorrect predictions are annotated

See also Figure S7 and Tables S6 and S7.

726 Cell 178, 714–730, July 25, 2019
CAF markers, and IAF markers are enriched in CRC tumors (Fig-

ure S5B), suggesting a shared origin and/or state. IAF expansion

during cancer-associated inflammation may affect the tumor

microenvironment. Last, both IAFs and inflammatory monocytes

form hubs in the cell-cell interaction network and may affect the

proportions of other cells (Figure 6E; Table S5).

By leveraging single-cell co-expression, we mapped more

than 50% of risk genes onto 10 meta-modules (Figure 7C)

and used these meta-modules to nominate causal risk genes

across loci (Figure 7E). However, this approach may fail to

identify risk genes that are lowly expressed, active in cells

and/or tissues that were not profiled, or not co-expressed

with other risk genes. It may also fail when multiple risk genes

act at the same locus; however, we find that it improves predic-

tions even when scoring genes irrespective of region (rather

than selecting one gene per region) (Figure S7D; STAR

Methods). We hope that these analyses will pave the road for

combining human genetics and single-cell genomics to better

understand polygenic disorders by relating risk gene modules

to polygenic risk scores, mapping variants to single-cell pheno-

types, and mapping non-coding variants to cells via single-cell

allele-specific expression and expression quantitative trait loci

(eQTL) analyses.

Our work provides a framework for using scRNA-seq to under-

stand human diseases and their therapeutic responses. We

identify changes in cell proportions and gene expression with

disease state and integrate these to understand mechanisms

of cell-cell signaling and drug susceptibility. Finally, we nominate

risk genes across loci, predicting their cells of action and putative

functions, and assemble them into the core pathways that un-

derlie disease.
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Mélius, J., Cirillo, E., Coort, S.L., Digles, D., et al. (2018).WikiPathways: amulti-

faceted pathway database bridging metabolomics to other omics research.

Nucleic Acids Res. 46 (D1), D661–D667.

Sofia, M.A., Ciorba, M.A., Meckel, K., Lim, C.K., Guillemin, G.J., Weber, C.R.,

Bissonnette, M., and Pekow, J.R. (2018). Tryptophan Metabolism through the

Kynurenine Pathway is Associated with Endoscopic Inflammation in Ulcerative

Colitis. Inflamm. Bowel Dis. 24, 1471–1480.

Srenathan, U., Steel, K., and Taams, L.S. (2016). IL-17+ CD8+ T cells: Differ-

entiation, phenotype and role in inflammatory disease. Immunol. Lett.

178, 20–26.

Stegmann, A., Hansen, M., Wang, Y., Larsen, J.B., Lund, L.R., Ritié, L., Nich-
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

mouse anti-EPCAM ThermoFisher Cat#MA1-06502; RRID:AB_558797

mouse anti-Vimentin Millipore Cat#MAB3400; RRID:AB_94843

mouse anti-CD19 BioLegend Cat#302201; RRID:AB_314231

rat anti-CD45 (PTPRC) ThermoFisher Cat# MA5-17687; RRID:AB_2539077

goat anti-CD138 R&D Systems Cat# AF2780; RRID:AB_442186

mouse anti-CD11c BD Biosciences Cat#550375; RRID:AB_393646

goat anti-CD4 R&D Systems Cat#AF-379-NA; RRID:AB_354469

rabbit anti-CD8 Invitrogen Cat# SP16; RRID:AB_837984

mouse anti-FOXP3 Abcam Cat#ab20034; RRID:AB_445284

Goat anti-Mouse IgG (H+L) Cross-Adsorbed

Secondary Antibody, Alexa Fluor 488

Thermo Fisher Scientific Cat#R37120; RRID:AB_2556548

Goat anti-Rat IgG (H+L) Cross-Adsorbed

Secondary Antibody, Alexa Fluor 647

Thermo Fisher Scientific Cat# A-21247; RRID:AB_141778

Goat anti-Rat IgG (H+L) Cross-Adsorbed

Secondary Antibody, Alexa Fluor 488

Thermo Fisher Scientific Cat# A-11006; RRID:AB_2534074

Goat anti-Mouse IgG (H+L) Cross-Adsorbed

Secondary Antibody, Alexa Fluor 647

Thermo Fisher Scientific Cat#A28181; RRID:AB_2536165

Goat anti-Mouse IgG (H+L) Cross-Adsorbed

Secondary Antibody, Alexa Fluor 405

Thermo Fisher Scientific Cat#A-31553; RRID:AB_221604

Donkey anti-Goat IgG (H+L) Cross-Adsorbed

Secondary Antibody, Alexa Fluor 488

Thermo Fisher Scientific Cat# A-11055; RRID:AB_2534102

Goat anti-Rabbit IgG (H+L) Cross-Adsorbed

Secondary Antibody, Alexa Fluor 647

Thermo Fisher Scientific Cat#A-21246; RRID:AB_2535814

Goat anti-Rabbit IgG (H+L) Cross-Adsorbed

Secondary Antibody, Alexa Fluor 594

Thermo Fisher Scientific Cat#A-11012; RRID:AB_2534079

Goat anti-Rabbit IgG (H+L) Cross-Adsorbed

Secondary Antibody, Alexa Fluor 488

Thermo Fisher Scientific Cat#A-11008; RRID:AB_143165

Hs-OSMR-tv1-C2 ACDBio Cat#445691-C2

Hs-IL10 ACDBio Cat#602051

Hs-TNFA-C2 ACDBio Cat#310421-C2

Hs-Best4 ACDBio Custom probe

Hs-KRT19-C2 ACDBio Custom probe

Hs-RSPON3 ACDBio Custom probe

Hs-GREM2-C2 ACDBio Cat#515591-C2

Hs-IL13RA2 ACDBio Cat#546221

Hs-PLAU-C3 ACDBio Cat#425001-C3

Hs-HLA-DRA ACDBio Cat#475891

Hs-OSM ACDBio Cat#456381

Hs-SOX8 ACDBio Cat#538991

Hs-CCL20-C2 ACDBio Cat#409611-C2

Hs-IL17A ACDBio Cat#310931

SlowFade Diamond Antifade Mountant with DAPI Thermo Fisher Scientific Cat#S36964
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Human colon biopsy tissue from healthy and

colitis adults

Prospective Registry in

Inflammatory Bowel Disease

Study at Massachusetts

General Hospital (MGH)

PRISM:2004P001067, Table S1

Human colon samples from tissue array BioMAX Cat#CO809a; Cat#CO245

Chemicals, Peptides, and Recombinant Proteins

Recombinant Human IL-22 PrepoTech Cat#200-22

B-27 Supplement Thermo Fisher Scientific Cat#12587-010

N-2 Supplement Thermo Fisher Scientific Cat#17502048

N-acetyl-1-cysteine Sigma-Aldrich Cat#A9165-5G

Y-276432 dihydrochloride monohydrate Tocris Cat#1254

Recombinant Human EGF PeproTech Cat#100-47

Matrigel Corning Cat#356231

Critical Commercial Assays

RNAscope Multiplex Fluorescent Detection Kit v2 ACDBio Cat#323110

Nextera XT Sample Preparation Kit Illumina Cat#FC-131-1096

10X Chromium Single Cell 30 Kit 10X Genomics Cat#120237

Deposited Data

Genome Reference Consortium Mouse Build 38 Genome Reference Consortium https://www.ncbi.nlm.nih.gov/assembly/

GCF_000001635.20/

TcoF-DB v2 human transcription factors Schaefer et al., 2011 http://compbio.massey.ac.nz/apps/

tcof/home/

PRRDB human pattern recognition receptors Lata and Raghava, 2008 http://crdd.osdd.net/raghava/prrdb/

KEGG pathways Kanehisa et al., 2017 https://www.genome.jp/kegg/

MSigDB pathways Liberzon et al., 2015 http://software.broadinstitute.org/gsea/

msigdb/index.jsp

WikiPathways OSM signaling pathway Slenter et al., 2018 https://www.wikipathways.org/index.

php/WikiPathways

FANTOM5 receptor-ligand database Ramilowski et al., 2015 http://fantom.gsc.riken.jp/5

Human colon scRNA-Seq FASTQ This paper Broad DUOS (https://duos.broadinstitute.org)

Human colon digital gene expression (DGE)

matrix

This paper Single Cell Portal: SCP259

(https://portals.broadinstitute.org/single_cell)

Experimental Models: Cell Lines

L-WRN ATCC CRL-3276

Oligonucleotides

Reverse Transcription DNA oligonucleotide

primer (RNase-free, 100 mM)

50 -AAGCAGTGGTATCAACGCAGAGTACT(30)VN-30

IDT N/A

SMARTER TSO (with LNA)

50 -AAGCAGTGGTATCAACGCAGAGTACrGrG+G-30
Exiqon N/A

PCR oligonucleotide primer

50 -AAGCAGTGGTATCAACGCAGAGT-30
IDT N/A

Software and Algorithms

CellRanger v2.0 10X Genomics https://github.com/10XGenomics/cellranger

sva (R package) Leek et al., 2012 https://www.bioconductor.org/packages/

devel/bioc/html/sva.html

Infomap clustering algorithm Rosvall and Bergstrom, 2008 https://igraph.org/

Barnes-Hut t-SNE algorithm van der Maaten and

Hinton, 2008

https://cran.r-project.org/web/packages/Rtsne/
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REAGENT or RESOURCE SOURCE IDENTIFIER

Scanpy Wolf et al., 2018a https://github.com/theislab/scanpy

Gephi Bastian et al., 2009 https://gephi.org/

MAST Finak et al., 2015 https://github.com/RGLab/MAST

Rtsne CRAN https://cran.r-project.org/web/packages/Rtsne/

PhenoGraph Levine et al., 2015 https://github.com/jacoblevine/PhenoGraph

MAGIC van Dijk et al., 2018 https://github.com/KrishnaswamyLab/MAGIC

nlme (R package) CRAN https://cran.r-project.org/web/packages/nlme/

index.html

rsvd (R package) CRAN https://cran.r-project.org/web/packages/rsvd/

index.html

Seurat (R toolkit) Butler et al., 2018 https://satijalab.org/seurat

Analysis code This paper https://www.github.com/cssmillie/

ulcerative_colitis
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, A.R.

(aregev@broadinstitute.org). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients and tissue samples
Biopsy samples were obtained from Crohn’s disease (CD) patients, ulcerative colitis (UC) patients, and healthy individuals after

informed consent and approval to the Prospective Registry in Inflammatory Bowel Disease Study at Massachusetts General Hospital

(PRISM:2004P001067). Clinical information and metadata for the samples are provided in Table S1. Healthy controls were recruited

at the time of routine colonoscopy. Healthy controls were individuals without a history of inflammatory bowel disease (IBD), a 1st de-

gree relative with IBD, histories of autoimmune disease, immunemediated conditions, infectious colitis, and colon cancer, or a family

history of colon cancer, and who were overall healthy with no other disease history (Table S1). UC patients were included based on

having a clinical diagnosis of ulcerative colitis, and observed to have active disease via macroscopic assessment from a physician

during an endoscopy. Two biopsies were obtained during endoscopy, using biopsy forceps that were used in standard of care. Each

patient’s biopsies were collected in a region determined by the scoping physician. Healthy individuals had two bites of endoscop-

ically normal tissue, while UC patients had either (1) one non-inflamed and one inflamed region biopsied (15 patients; Table S1) or two

adjacent non-inflamed and two adjacent inflamed biopsies to account for intra-patient variability (3 patients; Table S1). Biopsy bites

were immediately placed into cryovials containing Advanced DMEM F-12 and placed on ice for transport.

For scRNA-seq, all biopsy samples were obtained from UC patients and healthy individuals, including both males and females

(Table S1) while spanning a range of ages (20 – 77 years). For human spheroid cultures, biopsies were obtained from IBD patients

(2 CD patients (right colon, males and non-smokers) and a UC patient (right colon, female and non-smoker)).

METHOD DETAILS

Single cell dissociation from fresh biopsies
Single-cell suspensions from collected biopsy bites were obtained using a modified version of a previously published protocol (Pers-

son et al., 2013) as detailed below. Typically, two biopsies from the same patient were received directly in hand and processed in

parallel with an average time from patient to loading on the 10X GemCode or Chromium platform of 2.5 total hours, and never

exceeding 3.5 hours. While intact, biopsy bites were handled using a P1000 pipette applying gentle suction, and all centrifugation

steps done in a temperature controlled 4�C centrifuge. Biopsy bites were first rinsed in 30 mL of ice-cold PBS (ThermoFisher

10010-049) and allowed to settle. Each individual bite was then transferred to 10 mL epithelial cell solution (HBSS Ca/Mg-Free

[ThermoFisher 14175-103], 10 mM EDTA [ThermoFisher AM9261], 100 U/ml penicillin [ThermoFisher 15140-122], 100 mg/mL strep-

tomycin [ThermoFisher 15140-122], 10 mM HEPES [ThermoFisher 15630-080], and 2% FCS [ThermoFisher 10082-147]) freshly

supplemented with 200 mL of 0.5M EDTA. Separation of the epithelial layer from the underlying lamina propria was performed for

15 minutes at 37�C in a rotisserie rack with end-over-end rotation. The tube was then removed and placed on ice immediately for

10 minutes before shaking vigorously 15 times. Visual macroscopic inspection of the tube at this point yielded visible epithelial
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sheets, and microscopic examination confirmed the presence of single-layer sheets and crypt-like structures. The remnant tissue

bite was carefully removed and placed into a large volume of ice-cold PBS to rinse before transferring to 5mL of enzymatic digestion

mix (Base: RPMI1640, 100 U/ml penicillin [ThermoFisher 15140-122], 100 mg/mL streptomycin [ThermoFisher 15140-122], 10 mM

HEPES [ThermoFisher 15630-080], 2% FCS [ThermoFisher 10082-147], & 50 mg/mL gentamicin [ThermoFisher 15750-060]), freshly

supplement immediately before with 100 mg/mL of Liberase TM [Roche 5401127001] and 100 mg/mL of DNase I [Roche

10104159001]), at 37�C with 120 rpm rotation for 30 minutes. During this 30-minute lamina propria (LP) digestion, the epithelial

(EPI) fraction was spun down at 400 g for 7 minutes and resuspended in 1 mL of epithelial cell solution before transferring to a

1.5mL Eppendorf tube in order to minimize time spent centrifuging and provide a more concentrated cell pellet. Cells were spun

down at 800 g for 2 minutes and resuspended in TrypLE express enzyme [ThermoFisher 12604013] for 5 minutes in a 37�C bath fol-

lowed by gentle trituration with a P1000 pipette. Cells were spun down at 800 g for 2 minutes and resuspended in ACK lysis buffer

[ThermoFisher A1049201] for 3 minutes on ice to remove red blood cells, even if no RBC contamination was visibly observed in order

to maintain consistency across samples. Cells were spun down at 800 g for 2 minutes and resuspended in 1 mL of epithelial cell so-

lution and placed on ice for 3 minutes before triturating with a P1000 pipette and filtering into a new Eppendorf tube through a 40 mM

cell strainer [Falcon/VWR 21008-949]. Cells were spun down at 800 g for 2 minutes and then resupended in 200 mL of epithelial cell

solution and placed on ice while final steps of LP dissociation occurred. After 30 minutes, the LP enzymatic dissociation was

quenched by addition of 1ml of 100% FCS [ThermoFisher 10082-147] and 80 mL of 0.5M EDTA and placing on ice for five minutes.

Samples were typically fully dissociated at this step and after gentle trituration with a P1000 pipette filtered through a 40 mM cell

strainer into a new 50 mL conical tube and rinsed with PBS to 30 mL total volume. This tube was spun down at 400 g for 10 minutes

and resuspended in 1 mL of ACK and placed on ice for 3 minutes. Cells were spun down at 800 g for 2 minutes and resuspended in

1 mL of epithelial cell solution and spun down at 800 g for 2 minutes and resuspended in 200 mL of epithelial cell solution and placed

on ice.

Human spheroid cultures for IL-22-enterocyte interaction validation
Human biopsies from IBD patients (i.e., 2 CD patients and 1 UC patient, see above) were collected for spheroid culture. Each

individual bite was minced and then transferred to 10 mL epithelial cell solution (HBSS Ca/Mg-Free [ThermoFisher 14175-103],

8 mM EDTA [ThermoFisher AM9261], 100 U/ml penicillin [ThermoFisher 15140-122], 100 mg/mL streptomycin [ThermoFisher

15140-122], 10mMHEPES [ThermoFisher 15630-080]). Separation of the epithelial layer from the underlying lamina propria was per-

formed for 40 minutes at 4�C in a rotisserie rack with end-over-end rotation. The tube was then removed and placed on ice imme-

diately for 10 minutes before shaking vigorously 15 times. Visual macroscopic inspection of the crypt-like structures was performed.

Crypt like structures were spun down at 200 g for 3 minutes and washed twice with cold PBS and subsequently were resuspend with

Matrigel. Cells were then seeded in 24 well plates and grow with 50% L-WRN media (50% base –Advanced DMEM/F12 [GIBCO

12634-010] + 10% FBS, P/S, GluM, HEPES) +10uM Y27632 [TOCRIS 1254] +10uM SB 431542 [TOCRIS 1614] for 3 days before first

splitting. Media was then changed every 2 days.

For IL-22 stimulation, spheroids were grown for 3 days and then split 1:3 with fresh media containing 20ng/ml recombinant human

IL-22 [Peprotech 200-22] or mock. After 3 days, spheroids were collected and subjected to bulk RNA-Seq with the SMART-Seq2

protocol (Picelli et al., 2014).

Droplet-based scRNA-Seq
Single cells were processed through the GemCode Single Cell Platform per manufacturer’s recommendations using the GemCode

Gel Bead, Chip and Library Kits (V1) or single-cell suspensions were loaded onto 30 library chips as per the manufacturer’s protocol

for the Chromium Single Cell 30 Library (V2 and V3) (10X Genomics; PN-120233) (Table S1). Briefly, single cells were partitioned into

Gel Beads in Emulsion (GEMs) in the GemCode or Chromium instrument with cell lysis and barcoded reverse transcription of RNA,

followed by amplification, shearing (for V1) or enzymatic fragmentation (for V2 and V3) and 50 adaptor and sample index attachment.

Each biopsy bite was sequenced on two channels of the 10X GemCode or Chromium Single Cell Platform, one for the epithelial frac-

tion and the other for the lamina propria fraction in order to recover sufficient numbers of epithelial and lamina propria cells for down-

stream analyses. An input of 6,000 single cells was added to each channel with a recovery rate of approximately 2,000 cells. Libraries

were sequenced on an Illumina Nextseq or Hi-Seq (Table S1).

SMART-Seq2 for sequencing of human colon spheroids
Libraries were prepared using a modified SMART-Seq2 protocol as previously reported (Picelli et al., 2014). RNA lysate cleanup was

performed using RNAClean XP beads [Agencourt], followed by reverse transcription with Maxima Reverse Transcriptase [Life Tech-

nologies] and whole transcription amplification (WTA) with KAPA HotStart HIFI 23 ReadyMix [Kapa Biosystems] for 16 cycles. WTA

products were purified with Ampure XP beads [Beckman Coulter], quantified with Qubit dsDNA HS Assay Kit [ThermoFisher], and

assessed with a high sensitivity DNA chip [Agilent]. RNA-Seq libraries were constructed from purified WTA products using Nextera

XT DNA Library Preparation Kit [Illumina, FC-131-1096]. The population and no-cell controls were processed using the samemethod.

The libraries were sequenced on an Illumina MiSeq.
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Immunofluorescence assay (IFA)
Staining of human colon samples from tissue array of inflamed and healthy individuals (TMA, US BioMAX, #CO809a and #CO245)

was conducted as previously described (Biton et al., 2011). Sections were deparaffinized with standard techniques, incubated

with primary antibodies overnight at 4�C, and then incubated with secondary antibodies at room temperature for 30 min. Slides

were mounted with Slowfade Mountant+DAPI (Life Technologies, S36964) and sealed.

Single-molecule fluorescence in situ hybridization (smFISH)
RNAScope Fluorescent Multiplex and RNAScope Multiplex Fluorescent v2 (Advanced Cell Diagnostics) were used per manufac-

turer’s recommendations with the following alterations. Target retrieval boiling time was adjusted to 12 minutes and incubation

with Protease IV at 40�C was adjusted to 15 minutes. Slides were mounted with Slowfade Mountant+DAPI (Life Technologies,

S36964) and sealed.

Combined IFA and smFISH
Combined IFA and smFISH was implemented by first performing smFISH and then IFA, as described above, with the following

alterations. After horseradish peroxidase (HRP) enzyme blocking, tissue sections were washed in washing buffer, incubated with pri-

mary antibodies overnight at 4�C, washed in 1x TBST 3 times and then incubated with secondary antibodies for 30 min at room tem-

perature. Slides were mounted with Slowfade Mountant+DAPI (Life Technologies, S36964) and sealed.

Imaging of tissue sections
Images of tissue sections were taken with a confocal microscope Fluorview FV1200 using Kalman filtering and sequential laser emis-

sion to reduce noise and signal overlap. Scale bars were added to each image using the confocal software FV10-ASW 3.1 Viewer.

Images were overlaid and visualized using ImageJ software (Schneider et al., 2012).

Antibodies and RNA smFISH probes
Antibodies used for immunofluorescence

Mouse anti-EPCAM (1:500, ThermoFisher MA1-06502), mouse anti-Vimentin (1:500, Millipore MAB3400), mouse anti-CD19 (1:100,

BioLegend 302201), rat anti-CD45 (1:200, ThermoFisher MA5-17687), goat anti-CD138 (1:100, R&D Systems AF2780), mouse anti-

HLA-DR/DP/DQ (1:200, ThermoFisher MA1-25914), mouse anti-CD11c (1:100, BD Biosciences 550375), goat anti-CD4 (1:100, R&D

Systems AF-379-NA), rabbit anti-CD8 (1:100, Invitrogen SP16). Alexa Fluor 488-, 594-, and 647-conjugated secondary antibodies

were used (Life Technologies).

Human probes used for single-molecule FISH with RNAscope (Advanced Cell Diagnostics):

BEST4 (C1), KRT19 (C2), RSPON3 (C1), GREM2 (C2), IL13RA2 (C1), PLAU (C3), HLA-DRA (C1), OSM (C1), HLA-DPB1 (C2), OSMR

(C2), SOX8 (C1), CCL20 (C2), IL17A (C1).

QUANTIFICATION AND STATISTICAL ANALYSES

Processing FASTQ reads into gene expression matrices
Cell Ranger v2.0 was used to demultiplex the FASTQ reads, align them to the hg19 human transcriptome, and extract their ‘‘cell’’ and

‘‘UMI’’ barcodes. The output of this pipeline is a digital gene expression (DGE) matrix for each sample, which records the number of

UMIs for each gene that are associated with each cell barcode. DGE matrices were filtered to remove low quality cells, defined as

cells in which fewer than 250 different genes were detected. This cutoff was determined empirically: higher cutoffs led to dispropor-

tionate filtering of mast and T cells, whereas lower cutoffs did not affect the cell type distribution, but did reduce overall data quality.

To account for differences in sequencing depth across cells, UMI counts were normalized by the total number of UMIs per cell and

converted to transcripts-per-10,000 (henceforth ‘‘TP10K’’).

Cell clustering overview
To cluster single cells into distinct cell subsets, we followed the general procedure outlined in Haber et al. (2017) with additional mod-

ifications. This workflow includes the following steps: partitioning cells into epithelial, stromal, and immune compartments, followed

by clustering the cells within each compartment, which entails the selection of ‘‘variable’’ genes, batch correction, dimensionality

reduction (PCA), and graph clustering. Each step of this workflow is detailed below.

Partitioning cells into epithelial, stromal, and immune compartments
Cells were partitioned into epithelial, stromal, and immune compartments based on the expression of knownmarker genes. First, we

clustered the cells within each sample by their gene expression profiles (with the clustering procedure below). The clusters were

scored for the following gene signatures: epithelial cells (EPCAM, KRT8, KRT18), stromal cells (COL1A1, COL1A2, COL6A1,

COL6A2, VWF, PLVAP, CDH5, S100B), and immune cells (CD52, CD2, CD3D, CD3G, CD3E, CD79A, CD79B, CD14, CD16,

CD68, CD83, CSF1R, FCER1G). Signature scores were calculated as the mean log2(TP10K+1) across all genes in the signature.

Each cluster was assigned to the compartment of its maximal score and all cluster assignments were manually inspected to ensure
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the accurate segregation of cells. Finally, the cells within each compartment were assembled into three DGEmatrices, comprising all

epithelial cells, all stromal cells, and all immune cells.

Variable gene selection
To identify variable genes within a sample, we first calculated the mean (m) and the coefficient of variation (CV) of expression of each

gene. Genes were then grouped into 20 equal-frequency bins (ventiles) according to their mean expression levels. LOESS regression

was used to fit the relationship, log(CV) �log(m), and the 1,500 genes with the highest residuals were evenly sampled across these

expression bins. To extend this approach to multiple samples, we performed variable gene selection separately for each sample to

prevent ‘‘batch’’ differences between samples from unduly impacting the variable gene set. A consensus list of 1,500 variable genes

was then formed by selecting the genes with the greatest recovery rates across samples, with ties broken by random sampling. This

consensus gene set was then pruned through the removal of all ribosomal, mitochondrial, immunoglobulin, and HLA genes, which

were found to induce unwanted batch effects in some samples in downstream clustering steps.

Batch correction
We observed substantial variability between cells that had been obtained from different human subjects, which likely reflects a com-

bination of technical and biological differences. In some cases, these ‘‘batch effects’’ led to cells clustering first by patient or disease

phenotype, rather than by cell type or cell state. To eliminate these batch differences, we ran ComBat (Johnson et al., 2007) with

default parameters on the log2(TP10K+1) expressionmatrix, allowing cells to be clustered by cell type or cell state. Importantly, these

batch-corrected data were only used for the PCA and all steps relying on PCA (e.g., clustering, diffusion map, t-SNE visualization); all

other analyses (e.g., differential expression analysis) were based on the original expression data.

Comparison of batch correction methods
We compared ComBat to two other batch correction methods that were designed specifically for scRNA-Seq data: MultiCCA (Butler

et al., 2018) and LIGER (Welch et al., 2018). Bothmethods were run on the log2(TP10K+1) expression data for cells from the epithelial,

stromal, and immune compartments, using default parameters with n = 20 components to match the original analysis. Following

batch correction, cell embeddings were visualized using the Barnes-Hut t-Distributed Stochastic Neighbor Embedding (t-SNE) algo-

rithm with default parameters. To visualize congruence between methods, we then projected the cell subsets that were originally

defined using the ComBat-transformed data (i.e., Figure 1C) onto the t-SNE coordinates calculated using each of the other methods.

Inspection of the batch correction methods revealed that ComBat performed well in comparison to the other methods, in agreement

with a recent comparison of batch correction methods (Büttner et al., 2019).

Dimensionality reduction, graph clustering, and t-SNE visualization
Cells were clustered at two stages of the analysis: first, to initially partition the cells within each sample into epithelial, stromal, and

immune compartments (single sample clustering), and second, to cluster cells from multiple samples into distinct subsets (multi-

sample clustering).

For single-sample clustering, we first ran low-rank PCA on the variable genes of the entire log2(TP10K+1) expression matrix (as no

consensus list needs to be generated). The Infomap graph clustering algorithm (Rosvall and Bergstrom, 2008) was then applied to the

k-nearest neighbor (k-NN) graph defined using PCs 1 to 20 and k = 50 nearest neighbors. These parameters were chosen to ‘‘over-

cluster’’ the cells, ensuring that cells from distinct compartments were not grouped together.

In contrast, for multi-sample clustering, we ran low-rank PCA on the variable genes of the batch-corrected expression matrix, cho-

sen as described above. We then applied Phenograph (Levine et al., 2015) to the k-NN graph defined using PCs 1 to 20 and a varying

k, which was selected through close inspection of the data (see ‘‘Selecting the number of nearest neighbors for graph clustering’’):

k = 750 for epithelial cells, k = 250 for stromal cells, and k = 250 for immune cells. Althoughmost clusters were stable over a range of k,

some rare epithelial subsets, such as tuft cells and M cells, were initially merged with larger clusters. We therefore re-clustered the

epithelial cells with fewer neighbors (k = 50) to achieve higher granularity in the clusters and added clusters corresponding to BEST4+

enterocytes, enteroendocrine cells, and M cells to the original set of clusters. Additionally, we partitioned the immune cells into

myeloid, B cell, and T cell compartments based on DE genes within each cluster, and repeated the clustering using the k-NN graphs

defined with PCs 1 to 15 and k = 50 for myeloid cells, k = 100 for B cells, and k = 100 for T cells. After clustering the cells, we merged

pairs of clusters that were separated by fewer than 5 differentially expressed (DE) genes with AUC > 0.60, a permissive cutoff that

merges only highly similar clusters. Finally, the Barnes-Hut t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm was

run on the PCs with perplexity = 20 and for 10,000 iterations to produce two-dimensional embeddings of the data for visualization

(Figure 1C).

Selecting the number of nearest neighbors for graph clustering
To select the number of nearest neighbors, k, for clustering, we examined a range of choices (typically k = 25, 50, 100, 250, 500, and

750). In general, we tried to select a k yielding the highest granularity clusters that were still biologically distinct, as determined

through inspection of their marker genes. We also looked at the stability of cluster assignments over the full parameter range and

tried to select a k yielding stable and well-resolved clusters. Therefore, the final choice of k reflects both data-driven clustering
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and expert knowledge. To ensure that all transcriptionally distinct cell subsets were identified, we sub-clustered each cell subset and

identified those sub-clusters that were supported by discriminative differentially expressed genes (see ‘‘Identifying transcriptionally

distinct sub-clusters’’).

Identifying transcriptionally distinct sub-clusters
To systematically determine whether transcriptionally distinct subpopulations of cells may exist, we sub-clustered each cell subset

using its k-NN graph defined using PCs 1 to 10 and k = 250 (see ‘‘Dimensionality reduction, graph clustering, and t-SNE visualiza-

tion’’). These parameters were selected to yield relatively few sub-clusters, such that that any of the major differences would be

found. We then searched for differentially expressed genes that could accurately distinguish between the cells in each sub-cluster

versus all other cells with an area under the curve (AUC) exceeding 0.75. Sub-clusters containing highly discriminative marker genes

were then flagged for further analysis (Table S2).

Comparison of training and test sets by a classification based approach
To compare the training and test sets, we first trained a Random Forest classifier to predict the subset of each cell, using the cell

subsets that were originally defined from the training set (Figure 1C). The RandomForest was trained separately for cells in the epithe-

lial, stromal, and immune compartments, with the input data constructed as follows. First, we used ComBat (Johnson et al., 2007) to

generate a batch-corrected log2(TP10K+1) expression matrix containing the variable genes (X1). Second, we performed PCA on this

matrix to obtain a 20-dimensional embedding of the batch-corrected data (X2). Third, we used LIGER to compute a separate batch-

corrected 20-dimensional embedding of the data (X3). These threematrices (i.e., X1, X2, and X3) were then combined to form the input

feature matrix, X. We note that ComBat and LIGER provide similar but complementary descriptions of the data and both sets of fea-

tureswere deemed important by theGini Importancemeasure (data not shown). The RandomForest was trainedwith 1,000 trees and

default parameters, except that in order to account for class imbalances, we weighted each class by the inverse of its class

frequency.

Across all cells, the ‘‘out of bag’’ error, which provides an unbiased estimate of the test error, was 10.7%, suggesting this model

can be used to accurately infer subsets for the test data. Classification errors were mostly between similar cell subsets (Figure S1C),

such as CD69- and CD69+ mast cells, with two major exceptions. Our model performed less well for cycling immune cells, which are

composed of cells from many different types, and CD8+IL-17+ T cells.

Next, to confirm that this model can be applied to the test dataset, we co-embedded the single cells from both datasets (see

‘‘Dimensionality reduction, graph clustering, and t-SNE visualization’’) and labeled them according to their predicted cell subsets

(Figure S1D). Following removal of doublets from the test dataset (see ‘‘Doublet removal’’), the two datasets aligned well with noma-

jor incongruences. In some cases, the merged dataset contained increased sub-cluster resolution (e.g., immature and mature

BEST4+ enterocytes versus only one cluster ofBEST4+ enterocytes), due to an increase in cell number, or discernible patient-specific

sub-clusters, but the classifier accurately classified these cells into their larger groups.

Comparison of intra- versus inter-individual variability
To assess levels of biological and technical variation in our scRNA-Seq profiles, we analyzed the epithelial and lamina propria com-

partments of 18 replicate biopsies collected from the same individual (12 healthy, 3 non-inflamed, 3 inflamed). For each pair of sam-

ples, we measured the Pearson correlation between their logit-transformed cell proportions, as well as their mean gene expression

levels. We then compared intra-individual and inter-individual correlations across healthy, non-inflamed, and inflamed tissue regions

(Figure S1E).

Doublet removal
Following the initial clustering, we removed all clusters consisting of likely cell doublets from epithelial, stromal, myeloid, B cell and

T cell compartments, then repeated the steps outlined in ‘‘dimensionality reduction, graph clustering, and t-SNE visualization.’’ Dou-

blets were identified through expert annotation of the marker gene lists for each cell cluster and corresponded to clusters with

markers from distinct lineages (e.g., clusters with B cell and T cell markers). However, within the immune compartment, cells from

distinct lineages sometimes clustered together (e.g., cycling B cells and cycling T cells) and these cells were then separated back

into their source lineages. Doublet removal was therefore an iterative process alternating between removing doublets, assigning cells

to the correct compartments, and graph clustering and t-SNE visualization.

Cell lineage dendrogram
As an auxiliary tool, cell subsets were manually organized on a dendrogram reflecting known lineage relationships (Figure 1D, top).

This tree is organized as follows. Under epithelial cells we split Absorptive and Secretory subtrees. The Absorptive subtree included

further subtrees for Transit Amplifying (TA) cells (Absorptive TA 1, Absorptive TA 2), Immature cells (Immature Enterocytes 1, Imma-

ture Enterocytes 2, Enterocyte Progenitors), and Mature cells (Enterocytes, BEST4+ Enterocytes). The Secretory subtree included

subtrees for progenitor cells (Secretory TA, Immature Goblet) and for mature cells (Goblet, Tuft, and Enteroendocrine). Stem cells,

Cycling TA cells, andM cells were placed directly under the node corresponding to all epithelial cells. The Stromal subtree had Fibro-

blast, Endothelial, and Glial subtrees. Fibroblasts were subdivided into WNT2B+ (WNT2B+Foshi, WNT2B+Foslo 1, WNT2B+Foslo 2,
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RSPO3+), WNT5B+ (WNT5B+ 1, WNT5B+ 2), inflammatory fibroblast, and myofibroblast subtrees. The Endothelial cell subtree

included branches for Endothelial, Microvascular, Post-capillary venules, and Pericytes. The Immune subtree was partitioned into

myeloid and lymphoid lineages. Myeloid cells included subtrees for Mast cells (CD69+ Mast, CD69- Mast) and Monocytes (Macro-

phages, Cycling Monocytes, Inflammatory Monocytes, and DCs (DC1s, DC2s)). Lymphoid cells included subtrees for NK cells, ILCs,

B cells, T cells (subdivided intoCD4+ T cells (CD4+ Activated Foslo,CD4+ Activated Foshi,CD4+ Memory, Tregs, PD1
+, MThi) andCD8+

T cells (CD8+ IELs, CD8+ LP, CD8+IL-17+, and CD8+ Cycling)), and B cells (Plasma cells, Follicular (FO) B cells, Germinal Center (GC)

B cells, and Cycling B cells).

Scoring samples for inflammation-associated genes
To validate our endoscopic assessments of tissue inflammation, we constructed a gene signature of the following inflammation-

associated genes: IFNG, IFNGR1, IFNGR2, IL10, IL12A, IL12B, IL12RB1, IL12RB2, IL13, IL17A, IL17F, IL18, IL18R1, IL18RAP,

IL1A, IL1B, IL2, IL21, IL21R, IL22, IL23A, IL23R, IL2RG, IL4, IL4R, IL5, IL6, JUN, NFKB1, RELA, RORA, RORC, S100A8, S100A9,

STAT1, STAT3, STAT4, STAT6, TGFB1, TGFB2, TGFB3, and TNF. We separately scored EPI and LP samples for these signatures,

then combined these measurements by calculating their mean z-scores. P values between healthy and non-inflamed or inflamed

samples were computed using a one-sided Wilcoxon test. P values between non-inflamed and inflamed samples were computed

using a one-sided paired Wilcoxon test within each subject.

Epithelial cell differentiation
The diffusion map and diffusion pseudotime (Figure 2D) for epithelial cells were estimated with Scanpy v0.4.2 (Wolf et al., 2018a) on

the log2(TP10K+1) expression matrix, with the following parameters: n_pcs = 20, n_neighbors = 30, n_dcs = 20, n_branchings = 1,

min_group_size = 0.001. The differentiation map (Figure 1F) was estimated using the partition-based graph abstraction (PAGA)

method implemented in Scanpy v1.4 (Wolf et al., 2018b) using the same parameters. In both cases, one of the LGR5+ISCs was

randomly selected as the root cell. To identify significant changes in epithelial cell differentiation with UC, we estimated diffusion

pseudotimes separately for absorptive and secretory cells, and used mixed effects models to assess significance (see ‘‘Identifying

significant changes in gene signatures and pseudotime during disease’’).

Estimation of cell proportions
Because EPI and LP samples were separately processed and sequenced, cell proportions estimated from each sample type are not

directly comparable. Therefore, rather than combining the cell subset proportions from different sample types (e.g., using a weighted

mean across EPI and LP samples), we determined for each cell subset whether it was EPI-associated or LP-associated and calcu-

lated its proportions using only samples of that type. As expected, EPI samples mostly consisted of epithelial cells (89% ± 15%

epithelial cells on average) with some tissue-resident immune cells, such as CD69- mast cells, CD8+ IELs, and CD8+IL-17+

T cells, whereas LP samples primarily contained immune and stromal cells (84% ± 18% immune and stromal cells on average).

Identifying statistically significant differences in cell proportions
To identify changes in cell proportions between healthy, non-inflamed, and inflamed tissue, we used multiple statistical tests that

each capture distinct but complementary types of information: (1) a Dirichlet-multinomial regression, (2) a Fisher’s exact test, and

(3) a Mann-Whitney test. We describe each of these below. A major concern with the comparison of cell proportions in scRNA-

Seq data is that they are not independent of each other. Because all proportions sum to 1, an increase in the proportion of one

cell subset will necessarily lead to a decrease in the proportions of other cell subsets. To account for these dependencies, we

used a Dirichlet-multinomial regression model, which tests for differences in cell composition between disease states (e.g., inflamed

versus healthy), while accounting for the proportions of all of the other cell subsets. This regressionmodel and its associated p values

were calculated using the ‘‘DirichReg’’ function in the DirichletReg R package. Because this is a multivariate test, its results may at

times appear counter-intuitive andmay not be congruent with univariate tests, such as a t test, which examine each cell subset inde-

pendently. We therefore also performed a Fisher’s exact test on the numbers of cells from each subset that were isolated from non-

inflamed or inflamed specimens versus healthy specimens. This test reflects how enriched each cell subset is in each disease state,

but does not account for the sample from which each cell was isolated. Therefore, we also performed a non-parametric Mann-Whit-

ney test on the proportions of each cell subset in non-inflamed or inflamed specimens versus healthy specimens.

Comparison of IgA+ and IgG+ plasma B cells
Themean log2(TP10K+1) expression levels of the IgA heavy chain genes (IGHA1, IGHA2) and IgG heavy chain genes (IGHG1, IGHG2,

IGHG3, IGHG4) were scored across all plasma cells. After examining the distribution of these scores, we empirically determined that

an expression cutoff corresponding to log2(TP10K+1) = 6 accurately discriminated among IgA+ and IgG+ cells. In total, 94% of all

plasma cells were classified as either IgA+ or IgG+, with only 0.2% classified as IgA+IgG+ ‘‘double positive’’ cells (likely corresponding

to doublets).
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Downsampling single cells for mean expression analysis
To facilitate downstream analyses, a separate dataset was constructed containing 50,375 down-sampled cells. These data were

used solely for the estimation of the expression distribution within cell subsets, but all other analyses were based on the full dataset.

We verified that the mean expression levels from the full and down-sampled datasets were strongly correlated across cell subsets

(mean Pearson’s r = 0.999). To down-sample cells, we first calculated the number of cells obtained from every cell subset in each

sample. We determined a fixed number of cells to retain from each of these subset-sample groups (purposefully not preserving their

original proportions) that would yield approximately 50,000 cells in the down-sampled dataset. Finally, the highest quality cells

(measured by the number of genes per cell) were retained from each of these groups. Using this method, samples and cell subsets

with relatively many cells (e.g., plasma cells) were heavily down-sampled, whereas samples and cell subsets with relatively few cells

(e.g., tuft cells) were largely retained intact.

Differential expression analysis
Differential expression (DE) tests were performed using MAST (Finak et al., 2015), which fits a hurdle model to the expression of each

gene, consisting of logistic regression for the zero process (i.e., whether the gene is expressed) and linear regression for the contin-

uous process (i.e., the expression level). To reduce the size of the inference problem, separatemodels were fit for each level of the cell

tree (see ‘‘Cell lineage dendrogram,’’ above), comparing cells within the given group to all other cells (e.g., ISCs versus non-ISCs). The

regression model includes terms to capture the effects of the cell subset and the disease state on gene expression, while controlling

for cell complexity (i.e., the number of genes detected per cell).

Specifically, we used the regression formula, Yi�X+D+N, where Yi is the standardized log2(TP10K+1) expression vector for gene i

across all cells, X is a binary variable reflecting cell subsetmembership (e.g., ISCs versus non-ISCs),D is the disease state associated

with each cell, and N is the number of genes detected in each cell. Overall, we fit three types of DE models, which varied by the en-

coded disease states: (1) to identify cell subset markers and DE genes in UC patients relative to healthy controls, we used three

disease states: Healthy, UC non-inflamed, and UC inflamed; (2) to identify DE genes between non-inflamed and inflamed patient

samples, we used two disease states: UC non-inflamed and UC inflamed; and (3) to identify genes that are specific to cell subsets

in healthy subjects andUC patients, we used two disease states: Healthy andUC. Additionally, a few heuristics were used to increase

the speed of the tests: we required all tested genes to have a minimum fold change of 1.2 and to be expressed by at least 1% of the

cellswithin the group of interest, and cells were evenly downsampled across groups so that amaximum of 2,500 cells were tested for

each cell subset. In all cases, the discrete and continuous coefficients of themodel were retrieved and p values were calculated using

the likelihood ratio test in MAST. Q-values were separately estimated for each cell subset comparison using the Benjamini-Hochberg

correction. Unless otherwise indicated, all reported DE coefficients and q-values correspond to the discrete component of themodel

(i.e., the logistic regression).

Estimation of the droplet contamination rate and filtering of putative ambient RNA contaminants
Droplets encapsulate single cells with small portions of the extracellular environment, leading to low but persistent levels of contam-

ination by ambient RNA (Macosko et al., 2015). To correct for this, we explicitly modeled droplet contamination. First, we partitioned

individual cells into the following groups: epithelial cells, fibroblasts, endothelial cells, myeloid cells, B cells, and T cells. We reasoned

that each group should uniquely express a subset of genes that are not found in other cells; for example, B cells uniquely express

IGHA1 and T cells uniquely express CD3D. Therefore, the off-target expression of such genes in the incorrect group (e.g. IGHA1

expression in T cells) should reflect contamination rather than intrinsic gene expression. Moreover, we hypothesized that the levels

of such off-target gene expression could serve as an accurate indicator of contamination rates in the entire dataset. To test this hy-

pothesis, we compared themean expression levels of genes within each group (i.e., in-group expression) to a weighted mean of their

expression levels in all other cells (i.e., out-group expression), which is a proxy for the composition of extracellular RNA (e.g., B cells

versus non-B cells, Figure S1F, see ‘‘Normalization and scaling of expression levels for contamination filtering’’ below for additional

details). As expected, knownmarkers for cell groups were enriched at the edges of the point distribution, where differences between

in-group and out-group expression were greatest. For example, known B cell markers were enriched on the left edge of the point

distribution (e.g. IGHA1 and IGJ, Figure S1F), while markers for other cell types were enriched on the right edge, likely reflecting

contamination (e.g. CD3D and TPSAB1, Figure S1F). We noticed two other patterns yielding insights into contamination: (1) genes

with sufficiently high out-group expression always had non-zero in-group expression, and (2) there is a linear relationship between in-

group and out-group expression levels, particularly for contaminants on the right edge of the point distribution (Figure S1F). Taken

together, these observations suggest that contamination uniformly affects all genes and that the overall levels of contamination for

each gene are proportional to its representation in the extracellular RNA pool.

Therefore, to estimate the contamination rate for each cell group, we fit a robust linear model to the genes on the right edge of the

point distribution, whose expression is almost entirely driven by contamination. Surprisingly, the fitted models were nearly identical

across groups (slope = 1.33 ± 0.07, intercept = �7.22 ± 0.33) and we constructed a consensus model using the mean slope and

mean intercept. This model corresponds to a contamination rate between 0.5% and 5% of the total RNA pool in each sample.

We used this model to identify potential contaminants in all cell subsets by conservatively flagging genes with residuals < 5
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(i.e., 32-fold increase over the estimated contamination rate) and genes in each cell subset whose expression did not exceed 1% of

its total expression across all cells. This approach filtered out nearly all identifiable contamination, assessed by manual inspection of

the filtered and unfiltered gene lists.

Normalization and scaling of expression levels for contamination filtering
The composition of extracellular RNA is different for each sample; for example, EPI samples have high levels ofMUC2, while LP sam-

ples have high levels of IGHA1. Any attempt to identify droplet contamination should therefore account for the distribution of samples

that cells were isolated from. For example, the expression of genes in B cells (i.e., in-group expression) should be compared to their

pooled expression levels in non-B cells (i.e., out-group expression) using the same samples that the B cells were recovered from.

Thus, rather than using a simple mean to measure the in-group and out-group expression levels for a gene, we used a weighted

mean of its expression in each sample, where the weights were determined as the fraction of in-group cells belonging to that sample.

More specifically, the in-group expression of gene i for cell group q is:

Iiq =
X

j

wqj,
1

Tj

X

k˛qj

xik
where xik is the expression level of gene i in cell k, qj is the set of all
 cells that were isolated from sample j that belong to cell group q, Tj
is the total number of cells in sample j, andwqj is theweight for cell group q in sample j. Similarly, the out-group expression of gene i for

cell group g is:

Oig =
X

j

wqj,
1

Tj

X

k˛Qj

xik
whereQ is the set of all cells that were isolated from sample j that d
j o not belong to cell group q. Theweight for cell group q in sample j,

wqj, is equal to the proportion of cells from cell group q that were isolated from sample j:

wqj =

��qj

��
P

k jqk j
Importantly, the normalization factor, Tj, normalizes the expression
 to the total number of cells in the sample, ensuring that expression

levels are comparable across cell groups.

Gene specificity
For each expressed gene, we testedwhether that genewas specific to any cell subset (e.g., Treg cells) or any node of the cell hierarchy

dendrogram (e.g. CD4+ T cells). We defined a gene as specific to a cell group if it was significantly (i.e., adjusted p value < 0.05) and

positively differentially expressed in all pairwise comparisons to non-overlapping cell subsets and itsmean expression level within the

group was at least 2-fold higher than its mean expression in all non-overlapping cell subsets. In addition, we searched for cases

where a gene gained, lost, or changed its cell specificity between health and UC. Note that a change in gene specificity may, how-

ever, simply reflect the gain or loss of statistical power, rather than a statistically significant change in gene expression. Therefore, to

confirm that a gene was no longer specific to a cell subset in a given cohort (i.e., healthy subjects or UC patients), we required that

another cell subset have significantly greater expression of the target gene within that cohort.

Scoring gene signatures and identifying significant changes between health and disease
To prevent highly expressed genes from dominating a gene signature score, we scaled each gene of the log2(TP10K+1) expression

matrix by its root mean squared expression across all cells (using the ‘scale’ function in R with center = FALSE). The signature score

for each cell was then computed as the mean scaled expression across all genes in the signature. To identify statistically significant

changes in gene signature expression within each cell subset, we compared the change in expression of the gene signature to a null

distribution that was estimated from 100 background sets of genes. Each background gene set was selected to have matching

expression levels, using 20 equal-frequency expression bins that were defined using the healthy cells within the cell subset. Mixed

effects models were used to identify significant changes in background-adjusted expression levels (see ‘‘Identifying significant

changes in gene signatures and pseudotime with disease’’).

Estimation of false discovery rate
Unless otherwise specified, false discovery rates were estimated with the Benjamini and Hochberg correction (Benjamini and Hoch-

berg, 1995), using the ‘‘p.adjust’’ R function with the ‘‘fdr’’ method.

Identifying significant changes in gene signatures and pseudotime with disease
To identify significant changes in diffusion pseudotime (Figure 2D) or in the expression levels of gene signatures (Figure 4B) with dis-

ease, we used mixed linear models, which account for the uneven distribution of cells across samples. Mixed linear models were
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implemented using the ‘‘lme’’ function in the ‘‘nlme’’ R package, using a fixed effect term for disease state (i.e., healthy, non-inflamed,

or inflamed) and a random intercept that varies with each sample: Yi � D + (1 j S), where Yi is the vector of covariate i values across

cells,D is the disease state associatedwith each cell, andS is the sample that each cell was isolated from. P values for the fixed terms

were estimated with the ‘‘anova.lme’’ function.

Acquisition of gene sets
Human transcription factors were obtained TcoF-DB v2 (Schaefer et al., 2011). Human G-protein coupled receptors were obtained

from UniProtKB (search term: family = ‘‘g protein coupled receptor,’’ reviewed = ‘‘yes,’’ organism = ‘‘Homo sapiens (Human) [9606]’’)

(The UniProt Consortium, 2018). Human transporters were obtained from UniProtKB (search term: keyword = ‘‘Transport [KW-

0813],’’ reviewed = ‘‘yes,’’ organism ‘‘Homo sapiens (Human) [9606]’’). Human pattern recognition receptors were obtained from

PRRDB (Lata and Raghava, 2008) and supplemented with Human Gene Nomenclature Committee (HGNC) ‘‘C-type lectin domain

containing’’ gene family members (Yates et al., 2017). Human cytokines were obtained from the KEGG pathway for ‘‘Cytokine-cyto-

kine receptor interaction’’ (Kanehisa et al., 2017).

Acquisition of gene signatures
All pathways related to metabolism, inflammation, and stress were obtained from KEGG (Kanehisa et al., 2017), except in the

following cases, for which the pathways were not found in KEGG: IFN-a, IFN-g, and IL-2/Stat5 pathways were obtained fromMSigDB

(Liberzon et al., 2015) and the OSM pathway was obtained from WikiPathways (Slenter et al., 2018). The T cell signatures for cyto-

toxicity (GNLY, GZMB, GZMK, IFNG, NKG7), co-inhibition (CTLA4, PDCD1, TIGIT, HAVCR2, LAG3, BTLA, PDPN, CD160, GP49A,

LILRB4, CD274, CD200, CD244, PILRA, SIRPB1, LAIR1, CEACAM1, KLRA7, KLRA3. KLRA9, PTGER4, KLRD1, KLRC1, PROCR),

and co-stimulation (CD28, CD226, TNFRSF4, TNFRSF9, ICOS, CD27, TNFSF14, CD80, TNFSF4, CD86, TNFSF11, CD276,

CD40LG, TNFRSF18) were derived from known markers. Gene signatures for resistance and susceptibility to anti-TNF blockade

were obtained from a meta-analysis of 60 responders and 57 non-responders (Wang et al., 2016). The gene signature for poor colo-

rectal cancer prognosis was obtained from ameta-analysis of thousands of CRC patients, and the top 25 genes in the signature were

used (Calon et al., 2015).

Acquisition of microarray and bulk RNA-Seq datasets
We downloaded the following bulk datasets for comparison to our single-cell data: (1) microarray data from colon biopsies of 20 re-

sponders and 27 non-responders to TNF blockade, downloaded from the Gene Expression Omnibus (Arijs et al., 2009; GEO:

GSE14580); and (2) the normalized expression matrix for 414 colon adenocarcinoma samples from The Cancer Genome Atlas (Can-

cer Genome Atlas, 2012) sequenced on both the Illumina HiSeq and Illumina Genome Analyzer.

Comparison of TNF signaling and response to anti-TNF therapy
We scored each cell subset for gene signatures related to TNF signaling and response to anti-TNF therapy. To ensure that these gene

signatures were disjoint for correlation analysis, we removed all shared genes from the gene signatures related to anti-TNF response.

Analysis of bulk RNA-Seq data from human colon spheroids treated with IL-22 versus controls
To test the effects of IL-22 treatment on human colon spheroids, we constructed gene signatures for the top 100 differentially ex-

pressed genes in IL-22 treated spheroids versus non-treated controls (‘‘IL-22 signature’’). Differential expression was measured

as the mean log2(TP10K+1) fold change between the conditions across all of the bulk RNA-Seq samples. These gene signatures

were then scored to enterocytes from healthy individuals (see ‘‘Scoring gene signatures and identifying significant changes between

health and disease’’).

Using receptor-ligand pairs to infer cell-cell interactions
To identify cell-cell interactions, we mapped the FANTOM5 database of literature-supported receptor-ligand interactions (Ramilow-

ski et al., 2015) onto our lists of cell subset markers and differentially expressed genes within healthy, UC non-inflamed, and UC in-

flamed cells. We restricted our analysis to high-confidence interactions by requiring cell subset markers to have a discrete model

coefficient greater than 1 and adjusted p value less than 0.05. To identify changes in this network with disease, we also constructed

networks where the receptor and/or ligand were significantly differentially expressed, again requiring genes to have a discrete model

coefficient withmagnitude greater than 1 and adjusted p value less than 0.05. To ensure that these differentially expressed genes had

sufficiently high expression, we also required them to be cell subset markers in cells isolated from healthy subjects or the relevant

disease state (i.e., UC non-inflamed or UC inflamed).

For all networks, we quantified the interaction strength between two cell subsets as the number of unique receptors and ligands

connecting them, resulting in adjacencymatrices summarizing all cell-cell interactions within the dataset. Statistical significance was

then empirically assessed by permuting the receptors and ligands among all cell subsets in a degree preserving manner (using edge

swaps but only for uniquely connecting pairs), thus preserving the number of receptors and ligands encoded within each cell subset,

but changing the connectivity between cell subsets. After running 10,000 total permutations, p values were computed as the number

of times the edge strength in the permuted network was greater than or equal to the edge strength in the true network.
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To plot cell-cell interaction networks, we applied the Fruchterman-Reingold layout algorithm to a network defined using the –log10
transformed p values, using only the edges with p value < 0.05. Although edge weights were used to generate the layout, they were

removed from the final visualization for visual clarity.

Using receptor-ligand interactions to predict cell proportions
For each receptor-ligand pair in the cell-cell interaction network, we computed the Spearman correlation coefficient between the

mean log2(TP10K+1) ligand gene expression in the ligand-expressing cell and the logit-transformed proportions of the receptor-ex-

pressing cell across samples.

Defining IBD associations and candidate risk genes
We compiled a list of IBD, UC, and CD associations from recent large-scale IBD genome-wide association and fine-mapping studies

(de Lange et al., 2017; Huang et al., 2017; Jostins et al., 2012; Liu et al., 2015). Risk variants can act either in cis or in trans and esti-

mating the precise effect of any given variant is an active area of research that is beyond the scope of this work.We therefore opted to

map the genetic associations to all genes in their region of linkage disequilibrium (LD). After removing association signals mapping to

more than 50 variants (through fine-mapping if available, or in LD with the best-association SNP with R2 > 0.6), we arrived at 211

associations (comprising 120 associations for both UC and CD, 31 associations unique to UC, and 60 associations unique to CD)

that collectively spanned over 531 candidate risk genes (comprising 285 genes for both UC and CD, 63 genes unique to UC, and

199 genes unique to CD).

Defining putative IBD risk genes
Although the gene driving the signal of association is often unknown, in some cases, we can pinpoint a gene that is particularly likely

to be associated with disease risk. These putative risk genes were defined as genes containing a fine-mapped or nonsynonymous

protein coding variant, or which were the only genes in their region of LD (Table S6). To this set, we added SLC39A8 as an additional

IBD risk gene, which contains a fine-mapped variant associated with IBD risk (M.J.D. and R.J.X., unpublished data). In total, we iden-

tified 82 putative risk genes (comprising 48 risk genes for both UC and CD, 9 risk genes unique to UC, and 25 risk genes unique

to CD).

Construction of gene modules
To construct modules of co-regulated genes, we first used MAGIC v0.1 (van Dijk et al., 2018) to impute gene expression data in the

log2(TP10K+1) matrices for epithelial, stromal, and immune cells. MAGIC was run separately for healthy individuals and ulcerative

colitis patients. MAGIC was run with the recommended settings from its GitHub repository (including optimal t selection, ka = 4,

and all other parameters set to their default values). To construct gene modules, we calculated the Pearson correlation coefficient

between a query gene and all other genes in a cell subset using the imputed expression data. While prior studies of RNA-Seq

data have used permutation tests to estimate a null distribution of correlation coefficients to determine cutoffs for genemodulemem-

bership, this approach did not work well with MAGIC imputation, due to computational constraints. We therefore used a fixed cutoff,

retaining the top 100 genes with the largest correlation coefficients for each gene module. We constructed gene modules for all

candidate IBD risk genes, using cell subsets where the gene is expressed in at least 1% of all cells. Modules were defined as those

containing a significant excess of putative IBD risk genes (q < 0.05). To estimate q-values for a given module size, we constructed

modules from 100 datasets in which the gene labels were permuted, and modules were calculated with the same seed genes. The

false discovery rate was then empirically determined for each of themodule sizes (q = 0.05, 0.01, and 0.001 for modules with 3, 4, and

5 UC GWAS-implicated genes, respectively). Note that because modules are based on imputed expression data (van Dijk et al.,

2018), we verified that their genes were expressed in their respective cell types (Figure S7C).

Optimal set cover of IBD risk gene modules
To identify a minimal number of modules to explain the greatest number of putative IBD risk genes, we used the greedy set cover

algorithm. The algorithm is initialized with an empty set of ‘‘covered’’ IBD risk genes. At each step of the algorithm, we add the

meta-module with the largest number of ‘‘uncovered’’ IBD risk genes (i.e., genes not in the ‘‘covered’’ set) to this ‘‘covered’’ set.

Nominating IBD risk genes from candidate regions of genetic association
To determine whether scRNA-Seq data can help nominate ‘‘causal’’ genes from candidate gene sets, we first collapsed all risk var-

iants into 165 unique regions (comprising 99 regions for both UC and CD, 24 regions unique to UC, and 42 regions unique to CD),

reflecting distinct risk loci. Of these, 99 regions (comprising 57 regions for both UC and CD, 19 regions unique to UC, and 23 regions

unique to CD) had candidate gene sets containingmore than one gene, including at least one putative risk gene, which we termed the

‘‘correct’’ gene for that region. (In cases where a region contained multiple independent associations each with distinct candidate

gene sets, we selected the largest such set). For each candidate gene set, we then identified the gene with either (1) the highest

mean expression level across all cell subsets and disease states; (2) the largest DE coefficient in non-inflamed tissue; (3) the largest

DE coefficient in inflamed tissue; or (4) the largest module containing other candidate risk genes (iteratively defined; see Nominating

IBD risk genes using genemodules). We assessed the probability of selecting the ‘‘correct’’ risk gene using each of these four criteria
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and compared these results to a null model in which genes were randomly selected from risk regions across 1,000 trials. Missing

values were replaced with zeros and ties were broken by random sampling. To estimate statistical significance, we compared the

accuracy (defined as predicting the ‘‘correct’’ risk gene) of each method to the null distribution.

Nominating IBD risk genes using gene modules
Wedeveloped amethod that nominates risk genes based on their degree of co-regulation with other candidate genes from across all

IBD risk loci. This method uses no a priori knowledge of putative risk genes; instead, it is initialized with the full set of 531 candidate

genes defined across all disease risk loci. Our method assumes that IBD risk genes are co-regulated in genemodules within cell sub-

sets, as we observed for GWAS-implicated risk genes (Figure 7C). To measure this co-regulation, we therefore construct gene mod-

ules for each candidate gene in each of the cell subsets that express it, yielding 20,630 gene modules for the 531 candidate genes in

both healthy and diseased tissue (see Construction of gene modules).

We then iteratively score each gene based on the maximal number of other candidate genes it shares a gene module with, across

all such modules: genes belonging to the largest candidate gene modules receive the highest scores. To do so we use an iterative

procedure. Because the set of all candidate genes initially containsmany false positives, we iteratively weight each gene according to

our confidence that it is a risk gene, as follows. First, under the assumption that each risk region contains exactly one risk gene, the

weight for gene i is initialized according to the probability that it is the risk gene: wi = 1=Ni, where Ni is the size of its candidate gene

set (i.e., the number of genes in the risk region). Thus, genes from large candidate gene sets are initially assigned small weights, and

those from small candidate gene sets are initially assigned large weights. Next, we score each gene module J according to the num-

ber of candidate genes that it contains, adjusted by the weight associated with those genes: xJ =
P

j˛Jwj, for all genes j found in

module J. Each gene is then mapped to its highest scoring module and the probability for each gene i of obtaining its module score,

pi, is estimated from the empirical distribution of module scores. Finally, we update the weights associated with each gene i accord-

ing to the posterior probability that it belongs to the risk module for its risk region: wi = ð1� piÞ=
P

k˛Ci
ð1� pkÞ where Ci is the candi-

date gene set containing gene i (i.e., the genes that are in the same LD region as gene i). These weights, which reflect our degree of

confidence that a given gene is a risk gene, are iteratively updated in this manner until they converge on a final estimate (n = 10 it-

erations was sufficient).

To relax the assumption that each candidate gene set contains exactly one risk gene, we follow the same procedure outlined above

to estimate the weights for each gene. However, rather than using these weights to nominate one risk gene per risk region, we calcu-

late the scores for all genes and use these scores to globally nominate risk genes irrespective of their genetic locus.

DATA AND CODE AVAILABILITY

The accession number for the processed data reported in this paper is Single Cell Portal: SCP259. Raw data will be available for

download from the controlled-access data repository, Broad DUOS. Code used in this study will be available at https://www.

github.com/cssmillie/ulcerative_colitis.
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Figure S1. Characterization and Validation of the Discovery and Validation Cohorts of the Colon Single-Cell Atlas, Related to Figure 1

A. Cell subsets are evenly distributed across healthy individuals and UC patients in the discovery cohort. t-SNEs of major cell lineages, colored by the individuals.

B. Reproducible composition across samples. The fraction of cells (y axis) from each major lineage (color) in each lamina propria sample (x axis) in the discovery

and validation cohorts. C. Accurate classification of cell subsets in the discovery set. Confusion matrices for epithelial (left), stromal (middle), and immune (right)

cells, showing the percent of cells (dot size and color) from each cell subset in the test cohort (y axis) that are predicted to belong to each cell subset as defined in

the discovery cohort (x axis). D. Concordance of discovery and validation cohorts. t-SNEs of epithelial (left), stromal (middle), and immune (right) cells showing co-

embedded cells (STAR Methods) from both the discovery and validation cohorts, colored by cell subset assigned in each cohort. E. Reproducible single-cell

profiles from samples collected from the same individual and from different individuals. Distribution of correlation coefficients for cell proportions (top) and

expression levels (bottom) between replicate samples collected from the same individual (blue) or different individuals (red), for healthy, non-inflamed, and in-

flamed tissues (x axis). Boxplots: 25%, 50%, and 75% quantiles; error bars: standard deviation (SD). F. Example of approach to correct for ambient RNA

contamination. Mean expression level for each gene (dot) in B cells (i.e., ‘‘in-group’’ expression, y axis) and all other cells (i.e., ‘‘non-group’’ expression, x axis),

indicating genes used for the robust linear regression (black), genes classified as putative contaminants (red), select marker genes for different cell types (blue),

and other genes (gray). Dashed line: robust linear fit used to estimate putative contaminants.
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Figure S2. Cell Subset-Specific Features of the Colon Single-Cell Atlas, Related to Figure 1

A-C. Cell- and lineage-specific genes in key functional classes. Mean expression across the cell subsets (rows) of genes (columns) encoding cell- and lineage-

specific (STAR Methods; Table S3) transcription factors (A), G-protein coupled receptors (B), and cytokines and cytokine receptors (C), expressed those cells in

both healthy and UC samples (left), only in healthy samples (center), or only in UC samples (right). Asterisks: genes that significantly changed their cell- or lineage-

specificity between health and disease (STAR Methods). D. Specific expression of distinct key signaling genes in sensory epithelial cell subsets. Fraction of

expressing cells (dot size) and mean expression level in expressing cells (dot color) of selected signaling genes (columns) across cell subsets (rows).
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Figure S3. Cell Composition Changes during UC Highlight Changes within Plasma B Cells and in M Cells, Related to Figure 2

A,B. Cell proportion changes. Significant changes in cell frequency (y axis), assessed within a class using a Fisher’s exact test (A) or a Mann-Whitney test (B), for

non-inflamed (light blue) and inflamed (white) samples relative to healthy samples (dark blue) (adjusted p values, * = 0.05, ** = 0.01, *** = 0.001); error bars: SEMC.

Relative increase in IgG+ and decrease in IgA+ B cells among plasmaB cells with disease. Fractions of IgA+ (x axis) and IgG+ (y axis) B cells out of all plasmaB cells

in healthy (blue), non-inflamed (green), and inflamed (red) samples. Dashed line: linear fit. D.Microfold (M)-like cells in inflamed biopsies. Representative images of

combined smFISH and IFA of M-like cells in colon TMA showing their presence in inflamed human colon (no M-like cells were observed in healthy tissue from 10

different biopsies). Yellow arrow: M-like cell, scale bar, 50 mm; Inset, x5 magnification. E. WNT2B+ and WNT5B+ fibroblast markers are expressed in distinct

subsets of IAFs. t-SNE of scRNA-Seq profiles from IAFs, colored by the mean expression of markers for WNT2B+ fibroblasts (top) or WNT5B+ fibroblasts

(bottom). IAFs that express WNT2B+ markers typically do not express WNT5B+ markers (and vice versa).



A B C

AQP8

CDH3

CLCA1 CRABP2

FAM213A

FGFR2

FOSB

GABRP

HMGCS2

IL1RN

MIA
MMP7

PI3

PRAC1

PRSS21

SAA1

SAA2

SERPINB5

SLC6A14

TFF1

URAD

0

10

20

−2 0 2 4

NME1−NME2

TXNIP
AKR1C1

CHI3L1

CTGF

IGFBP5

PTGES

COL15A1

PLAT

ALOX5AP

DUSP1
IGF1

NR4A3

0

2

4

6

−1 0 1

AL928768.3

IGKV1−9 AICDA

CD180
HHEX

IGHG3IGHG4

IRF8

KLF2

LAT2

NFKBIA
CXCL13

TNFRSF4

0

5

10

15

20

−1 0 1 2 3

SAA1

MUC12

PRAC1

MT1G

MUC1

RNF186

HOXB13

IL23A

CCL20

CXCL1

CLCA1

CLDN3

0

10

20

30

−2.5 0.0 2.5 5.0

DE coefficient
(inflamed vs. non-inflamed)

DE coefficient
(inflamed vs. non-inflamed)

DE coefficient
(inflamed vs. non-inflamed)

RPL3

CTSC

ADAMDEC1

FGF7

IL11

MTRNR2L1

PTGS2

RGS5

TNFSF11

CDH13

COL4A2

TNFRSF12A

CXCL14

UTS2

HLA−DQA1

HLA−DPA1
PTGDS

0

2

4

6

−2 −1 0 1 2 3

FCRL1

RPL3

BCL7A

CARD11

TLR10

BATF

CXCR3

FGR

HTR3A

PDCD1

SLC12A9

FCER2

GPR82

HLA−DQA2

CHI3L2

0

2

4

−2 −1 0 1 2 3

−
lo

g 1
0(

p-
va

lu
e,

 a
dj

us
te

d)
−

lo
g 1

0(
p-

va
lu

e,
 a

dj
us

te
d)

BEST4+ enterocytes

Enterocyte progenitors

Secretory TA

Cycling TA

Stem

TA 2

TA 1

CD69+ mast

Inflammatory fibroblasts

Macrophages

Cycling monocytes

Post-capillary venules

WNT2B+ Foslo 2

WNT5B+ 2

WNT2B+ Foslo 1

CD4+ memory

CD8+ IL-17 +

Cycling B

CD8+ IELs

Follicular

GC

Epithelial Innate (stroma and myeloid) Adaptive

D E FEpithelial Innate (stroma and myeloid) Adaptive

Endothelial

Myeloid
Stromal

Fibroblast
B cells
CD4

Figure S4. Cell- and Lineage-Specific Expression Changes in Inflamed versus Non-Inflamed Tissues, Related to Figure 3

Volcano plots of genes that are differentially expressed in inflamed cells relative to non-inflamed cells, showing the effect size in inflammation (i.e., discrete DE

coefficient, x axis) and statistical significance (y axis). (A-C) General changes thatwere shared acrossmultiple cell subsets within (A) epithelial, (B) innate (including

stromal and myeloid cells), or (C) adaptive immune compartments. (D-F) Unique changes that were specific to cell subsets within these compartments. Selected

genes are highlighted, all genes are reported in Table S4.
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Figure S5. Changes in Transcriptional Programs in UC and Colorectal Cancer, Related to Figure 4

A. RSPO3+ cell profiles are enriched in signatures of poor prognosis in colorectal cancer (CRC) (Calon et al., 2015; STAR Methods). Distribution of the mean

expression (x axis) of a stromal gene signature of poor prognosis in CRC in the three highest scoring cell subsets and other compartments (y axis); crossbar:

mean. B. Inferred expansion of inflammatory fibroblasts with colorectal cancer. Left: mean expression of IAF marker genes in colorectal cancer samples (y axis)

and inflammatory fibroblasts (x axis). Black line: linear regression. Select genes annotated. Right: distribution of IAF gene signature scores in bulk RNA-Seq data

from colorectal cancer patients (blue) versus healthy controls (red) (***p < 0.001, Mann-Whitney test). Boxplots: 25%, 50%, and 75% quantiles; error bars:

standard deviation (SD, right). C. Expression changes (model coefficient, color bar) in inflamed cells relative to healthy cells for 23 KEGG pathways (rows) related

to carbon, lipid, and amino acid metabolism, and key additional pathways (apoptosis, autophagy, etc., bottom), for each cell subset (columns). Black outlines:

significant changes (q < 0.05, mixed linear model). D. Differential expression (color bar) of genes related to TNF signaling (rows) in inflamed versus healthy

samples across cell subsets (columns). Dot size: fraction of expressing cells in healthy (gray outline) or inflamed (black outline) samples; dot color: significant DE

model coefficients (q < 0.05, MAST hurdle model).



Figure S6. Cell-Cell Interactions May Explain Shifts in Cellular Proportions during UC, Related to Figure 6

A. Treatment of human colon spheroids (n = 3, 2 CD and one UC patients) with IL-22 induces the transcription of genes that are significantly enriched in

enterocytes. Distribution of mean expression (y axis) of gene signature enriched in IL-22 treated human colon spheroids across cell subsets (x axis);

P value, *** < 10�10 for enterocytes versus all other cells; Wilcoxon test. B,C. LASSO based models (STAR Methods) explaining the change in cell proportions

across samples in IAFs (B) and M-like cells (C) as a function of both positive (dark gray pointed arrows) and negative (light gray blunt arrows) relations to ligands

(edge label) expressed by other cell subsets marked by lineage (color). Shown are all ligands with non-zero coefficients in the regularized LASSO model.
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Figure S7. Expression of Risk Genes across Cell Subsets Highlights Key Cell Types and Pathways in UC, Related to Figure 7

A,B. Differential expression of putative IBD risk genes in specific cell subsets. For GWAS-implicated IBD risk genes (columns) that are differentially expressed in

non-inflamed (B) or inflamed (C) cells versus healthy cells, shown is the fraction of expressing cells in healthy (gray outline) or diseased samples (black outline) in

each cell subset and significant DE model coefficients (color, q < 0.05, MAST likelihood ratio test). C. Co-expression meta-modules are expressed in their

respective cell subsets. Distribution of gene expression levels (x axis) in cell subsets (y axis) for each of the putative risk genes in the meta-modules for PRKCB in

healthymacrophages (left),C1orf106 in UC enterocyte progenitors (center), and IFIH1 in UCBEST4+ enterocytes (right); crossbar: mean. D. Co-expressionmeta-

modules can help nominate multiple risk genes across candidate gene sets. Receiver operating characteristic (ROC) curve showing the true positive rate (y axis)

and the false positive rate (x axis) for nomination methods across different cutoffs for gene expression levels (red) and meta-module scores (blue).
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