
RESEARCH Open Access

A Reproducibility-Based Computational
Framework Identifies an Inducible,
Enhanced Antiviral State in Dendritic Cells
from HIV-1 Elite Controllers
Enrique Martin-Gayo1, Michael B. Cole2, Kellie E. Kolb1,3,4, Zhengyu Ouyang1, Jacqueline Cronin1,
Samuel W. Kazer1,3,4, Jose Ordovas-Montanes1,3,4, Mathias Lichterfeld1,5, Bruce D. Walker1,6, Nir Yosef1,7,8*,
Alex K. Shalek1,3,4* and Xu G. Yu1,5*

Abstract

Background: Human immunity relies on the coordinated responses of many cellular subsets and functional states.
Inter-individual variations in cellular composition and communication could thus potentially alter host protection.
Here, we explore this hypothesis by applying single-cell RNA-sequencing to examine viral responses among the
dendritic cells (DCs) of three elite controllers (ECs) of HIV-1 infection.

Results: To overcome the potentially confounding effects of donor-to-donor variability, we present a generally
applicable computational framework for identifying reproducible patterns in gene expression across donors who
share a unifying classification. Applying it, we discover a highly functional antiviral DC state in ECs whose fractional
abundance after in vitro exposure to HIV-1 correlates with higher CD4+ T cell counts and lower HIV-1 viral loads,
and that effectively primes polyfunctional T cell responses in vitro. By integrating information from existing genomic
databases into our reproducibility-based analysis, we identify and validate select immunomodulators that increase the
fractional abundance of this state in primary peripheral blood mononuclear cells from healthy individuals in vitro.

Conclusions: Overall, our results demonstrate how single-cell approaches can reveal previously unappreciated, yet
important, immune behaviors and empower rational frameworks for modulating systems-level immune responses that
may prove therapeutically and prophylactically useful.
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Background
Effective immune responses are founded upon the orches-
trated dynamics of complex cellular ensembles. Over the
past several decades, substantial work has been done to
catalog the cell types, states, and interactions that inform
these behaviors [1–7]. However, recent studies have shown
that seemingly identical cell populations can exhibit signifi-
cant and functionally relevant heterogeneities [1, 8–12].
While this unprecedented degree of cellular diversity chal-
lenges our understanding of the structure behind systems-
level immune responses, it also presents new opportunities
for identifying potential therapeutic or prophylactic strat-
egies rooted in modulating immune composition and
interactions.
One powerful approach for uncovering correlates of

immune fitness is to study individuals that demonstrate
exceptionally effective immune phenotypes [13], such as
resistance to or immunological control of HIV-1 infection.
Analysis of T cells from persons resistant to HIV-1 infec-
tion has linked genetic variation in the CCR5 locus to
reduced risk [14]. Similarly, studies of elite controllers
(ECs)—a rare (~ 0.5%) subset of HIV-1 infected individ-
uals who naturally suppress viral replication without com-
bination antiretroviral therapy (cART) [15, 16]—have
highlighted the importance of specific HLA-B variants and
enhanced cytotoxic CD8+ T cell responses [17, 18]. Al-
though compelling, these findings have proven insufficient
to explain the frequency of viral control in the general
population; additional cellular components or interactions
could be implicated in coordinating effective host defense.
Moreover, these studies have not suggested clinically ac-
tionable targets for eliciting an EC-like phenotype in other
HIV-1-infected individuals. Further work has demon-
strated improved crosstalk between the innate and adap-
tive immune systems of ECs [19–21]. For example, we
recently reported that enhanced cell-intrinsic responses to
HIV-1 in primary myeloid dendritic cells (mDCs) from
ECs lead to effective priming of HIV-1-specific CD8+ T
cell responses in vitro [20]. Nevertheless, the master re-
gulators driving this mDC functional state, the fraction of
EC mDCs that assume it, its biomarkers, and how to
potentially enrich for it are unknown.
The recent emergence of single-cell RNA-sequencing

(scRNA-seq) affords a direct means of identifying and
comprehensively characterizing functionally important
subsets of cells and their complex underlying biology.
As scRNA-seq has matured into a mainstream technol-
ogy, new questions about how to model single-cell vari-
ation continue to arise. To date, computational
modeling approaches have typically described single-
cell heterogeneity as a combination of gene-intrinsic ef-
fects (i.e. fundamental molecular noise), and gene-
extrinsic ones, with the latter capturing both cell-
intrinsic features (e.g. differences in intracellular protein

levels, epigenetic state, mutation status, extracellular envir-
onment) and library-intrinsic technical artifacts (e.g. drop-
out effects). Yet, in single-cell studies that utilize samples
from across multiple donors (e.g. EC patients), these gene-
extrinsic sources can be further subdivided into those that
are unique to specific donors and those that are shared.
The category of donor-dependent variation ranges from
donor-specific cell subsets or large differences in cell-type
composition to more subtle expression differences in con-
stituent cell types. If the goal of a study is to generate hy-
potheses relating to a common phenotype, such as EC,
strategies for prioritizing shared features can benefit from
quantitative characterizations of reproducibility across
multiple donors.
Here, we apply scRNA-seq to evaluate heterogeneity

of transcriptional responses of mDCs (CD14-, CD11cHi,
HLA-DR+) from three EC individuals after in vitro ex-
posure to a VSV-G pseudotyped HIV-1 virus or media
control. To overcome the potentially confounding effects
of donor-dependent biological and technical variation,
we propose a broadly applicable strategy that combines
reproducibility-based computational analyses with tar-
geted experimentation to resolve, characterize, and
modulate common response states across multiple
donors (Additional file 1: Figure S1). More specifically,
we utilize existing tools developed by our group for
single-cell data analysis, including SCONE [22] and Fas-
tProject [23], and implement an irreproducible discovery
rate (IDR)-based framework [24] in scRAD (Single-Cell
Reproducibility Across Donors; https://github.com/Yose-
fLab/scRAD) to identify reproducible response states,
pathways, and biomarkers that are consistently detected
after viral exposure across multiple donors who share a
unifying classification such as EC. Our analysis reveals
remarkable functional heterogeneity among mDCs, de-
scribed by several discrete transcriptional response
states. We discover one reproducible state that displays
gene expression features consistent with profound func-
tional activation and heightened antiviral activity. This
subset of mDCs, enriched among cells expressing the
surface molecules PD-L1 and CD64, is: (1) is induced
more efficiently in ECs than in HIV-1 chronic progres-
sors (CPs) or healthy donors (HDs) after in vitro viral
exposure; (2) associated with both higher CD4+ T cell
counts and lower HIV-1 viral loads; (3) more effective at
stimulating T cell proliferation in vitro; and (4) more ef-
ficient at inducing HIV-1-specific polyfunctional cyto-
toxic CD8+ T cells—all canonical correlates of antiviral
immunity in EC [25]. By leveraging scRAD to re-
examine publicly available transcriptomic datasets, we
further identify and experimentally investigate key regu-
latory molecules and adjuvants for modulating the
acquisition of this functional mDC response state in the
general population, with potential therapeutic and
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prophylactic implications. Together, our results highlight
how single-cell analytic approaches can identify drivers
of enhanced immunity and empower rational strategies
for altering ensemble cellular responses. Notably, key
analyses in this paper can be reproduced by following
the scRAD package vignette (scRAD Vignette; https://
github.com/YosefLab/scRAD/tree/master/vignettes).

Results
Shared EC mDC subsets revealed by scRNA-seq
In order to identify features of mDC (CD14-, CD11cHi,
HLA-DR+) innate immune responses to HIV-1 shared
across ECs, we performed scRNA-seq [2, 9, 10, 26, 27]
on peripheral blood mononuclear cells (PBMCs) from
three ECs (p1, p2, p3) exposed in vitro to either a VSV-
G pseudotyped HIV-1 virus or a media control for 48 h
(Fig. 1a, see “Methods”) [28]. Stimulating PBMCs
mimics some of the critical physiological interactions
that occur between mDCs and other immune cell types,
while the use of a VSV-G pseudotyped HIV-1 particles
enhances mDC infection efficiency [29]. Given the po-
tential bias of viability sorting, which may discard dying
dendritic cell (DC) undergoing viral stress responses,
we opted for in silico viability gating: following incuba-
tion, we sorted single mDCs and performed SMART-
Seq2-based scRNA-seq [30]. After estimating gene
expression levels, we applied elements of the SCONE
[22] normalization pipeline to filter out single-cell sam-
ples with poor alignment characteristics and normalize
the remaining data to minimize the impacts of these
characteristics on expression quantification (Additional
file 1: Figure S2, see “Methods”). Subsequently collected
viability-sorted mDC data exhibited only a two- to
threefold gain in the fraction of high-quality cells, sug-
gesting that incubated primary cells from HIV-1

infected patients represent a fragile source material
(Additional file 1: Figure S2). In total, we quantified
high-quality expression levels in 188 virus- and 130
media-exposed cells by sequencing to an average depth
of 700,000 reads (see “Methods”).
Low-dimensional representation of normalized expres-

sion estimates (see “Methods”) with t-distributed sto-
chastic neighbor embedding (tSNE) illustrates how cells
from each of the three EC donors span a common
expression state-space: cells from different donors often
share similar expression profiles, forming mixed clusters.
Unsupervised k-medoids clustering revealed five distinct
transcriptional response states (clusters 1–5 [c1–5];
Fig. 1b, see “Methods,” and Additional file 2: Table S1),
with all but one state (c5) observed in all three donors.
Linear regression analysis identified a small number of
genes exhibiting significant cluster-independent associa-
tions with patient and exposure (131 and 14 genes,
respectively). On the other hand, the fractional abun-
dance of c1–c4 varied significantly across the three do-
nors and two exposure conditions (see “Methods”).
Among these, the c1 response state was consistently
enriched among virally exposed mDCs (p value = 8.5 ×
10–6, logistic regression, Wald test) while c3 and c4 were
more common among media-exposed cells (p value =
1.3 × 10–4and 1.1 × 10–5, respectively, logistic regression,
Wald test) (Fig. 1c). Similar, though less pronounced,
shifts were observed for mDCs from donor p1 after
24 h (Additional file 1: Figure S3).
Within the virus-exposed p1 mDCs, we detected viral

product (primed from adenine-rich regions in the
pseudotyped HIV-1; see “Methods,” Additional file 1:
Figure S4), allowing us to consider associations be-
tween cell intrinsic responses and viral sequences. Viral
product was observed at comparable frequencies across

a b c

Fig. 1 scRNA-seq identifies five response clusters among EC mDCs. a Left: Schematic representation of experimental system. After incubation with
virus or a media control for 48 h, mDCs were isolated from PBMCs by FACS and profiled by scRNA-seq. Right: Violin plots of single-cell expression
levels for ten select genes for each EC donor (p1, p2, p3). Vertical lines represent individual cellular values; the upper (gray) half of the violin shows
the distribution of values for the media control and the bottom (red) shows the same for virus-exposed cells. b t-distributed stochastic neighbor
embedding (tSNE) of all FACS sorted mDCs across three EC subjects passing quality filters (see “Methods”; p1: circles, p2: triangles, p3: squares).
Virus exposed cells are outlined in red; media exposed cells have no outline. Cells separate into five distinct clusters (c1–5; see “Methods”). c Stacked
bar plot depicting the percentage of total mDCs in each cluster for each patient under media and viral exposure conditions
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the four “universal” clusters c1–c4 (not significant,
Chi-squared test; data not shown), though we were
limited to small numbers of cells (nvirus detected = 29) for
this analysis.
Together, the above findings suggest that average

virus-induced expression changes in the DC compart-
ment are well explained by shifts in the frequencies of
relatively invariant cell states.

Reproducibility-based functional analysis reveals a robust
antiviral signature among c1
To further examine these five EC mDC response states
and their inter-relationships, we utilized FastProject [23],
a software package for visualization and interpretation of
scRNA-seq data with reference to prior biological know-
ledge (see “Methods”). Coherently varying gene expres-
sion signatures identified by FastProject (Fig. 2a and
Additional file 3: Table S2) repeatedly implicated c1 and
c2, but not c3–c5, as responses associated with elevated
DC activation (Fig. 2b and Additional file 1: Figure S5).
Intriguingly, the transcriptional behavior of c1 mDCs
appeared more consistent with elevated innate antiviral
activity, displaying maximal values among signatures for
DCs exposed to viruses, such as HIV-1 and Newcastle
virus (p value = 2.5 × 10–9, 7.2 × 10–13, respectively; two-
sided Kolmogorov–Smirnov (KS) test c1 vs c3; c1, n =
220; c2, n = 26; c3, n = 35; Fig. 2b). In contrast, c2 was
well distinguished by signatures of DCs stimulated
through alternative pathogen associated molecular pat-
terns (PAMPs), such as LPS and R848 (p value = 8.4 ×
10–9, 8.6 × 10–11, respectively; two-sided KS test c2 vs c1;
c1, n = 220; c2, n = 26; c3, n = 35; Fig. 2b), or by bacteria
or parasites (Additional file 1: Figure S5A). Motivated by
the biological relevance of signatures contrasting c1 and
c2 against the remaining clusters, we tested for differen-
tial expression (DE) of each of these two populations
against the pool of c3, c4, and c5 cells.
As in most experiments involving non-model organ-

isms, inter-subject biological and technical variability
poses a substantial confounding risk by systematically dis-
torting or exaggerating transcriptome-wide differences be-
tween groups. To address this, we developed and applied
the DE module of scRAD: instead of explicitly modeling
donor effects on single-cell expression distributions [31],
scRAD performs DE analysis separately for every donor
(or donor-pool) and then combines the results using IDR
meta-analysis [24] (see scRAD vignette; see “Methods”).
This model-based meta-analysis technique has demon-
strated greater discriminative power than other ap-
proaches in simulation studies [24]; in our study, it better
emphasizes aspects of clustering that are reproduced over
multiple donors (Additional file 1: Figure S6). In order to
partition differentially expressed genes (c1 vs c3–5 and c2
vs c3–5) into a common-evidence set from both clusters

(c1 and c2) and two cluster-unique sets, we used scRAD
again, this time performing meta-analysis to aggregate the
DE results obtained independently for c1 and c2 (see
“Methods”).
In line with known pathway elements shared between

the DC antiviral and bacterial/parasitic response path-
ways [32, 33], we uncovered 121 genes that were com-
monly upregulated when comparing either c1 or c2 to
c3–5 (Fig. 2c, Additional file 4: Table S3). Additionally,
we identified 103 genes that were uniquely called as
up- or downregulated in c1 or c2 relative to the
remaining clusters (Fig. 2c). Genes preferentially
expressed by c1 include the interferon-inducible gene
IFIT3, whereas genes preferentially expressed by c2 en-
code molecules associated with endocytosis and antigen
presentation (e.g. LAMP3 [34], Fig. 2c), suggesting dif-
ferent levels of activation or polarization between c1
and c2. A targeted analysis of the expression of 28
interferon-stimulated genes (ISGs) regulated by HIV-1
[20, 35] suggested that c1 displayed the most potent
and coherent interferon-induced transcriptional signa-
tures (p value = 2.5 × 10–7, two-sided KS test c1 vs c2;
c1, n = 220; c2, n = 26; Additional file 1: Figure S5).
Interestingly, several canonical antiviral response genes
were differentially expressed between virus- and media-
exposed c1 cells, highlighting that stimulation-induced
changes also contribute modestly to measured tran-
scriptional variation (Additional file 1: Figure S4).
IPA [11] of differentially expressed gene lists re-

vealed that the gene set reproducibly differentiating
c1 from c3-5 is enriched for pathways related to DC
maturation (Benjamini–Hochberg [BH] q value = 4 ×
10–6), innate recognition of microbes by PRR (q = 8 ×
10–5), interferon (q = 3 × 10–3) and TLR signaling (q =
0.03, Fig. 2d). These pathway enrichments do not reach
significance for c2 (Additional file 1: Figure S5). We
partitioned the set of putative upstream regulators pre-
dicted by IPA according to “common” or “polarized”
activity across c1 and c2 (see “Methods”). Among the
latter, we observed several molecules associated with
antiviral responses with enhanced activity in c1 (IFNG,
IFNA, STAT1). We also saw evidence of specific TLR
activation (TLR3, TLR4) for c1 but not c2 (Fig. 2d, e
and Additional file 1: Figure S5). Overall, these obser-
vations suggest that c1 represents a subset of mDCs
in an activated viral response state that could poten-
tially inform the effective innate antiviral immune re-
sponses observed in bulk mDC from ECs [20].

Reproducible biomarker identification for c1 mDCs
To further study the c1 response state, we sought to
identify putative markers for prospectively isolating c1
cells after exposure to HIV-1 across ECs. We developed
two reproducibility-based criteria for surface marker
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candidacy, which have been implemented in the bio-
marker selection module of scRAD: (1) the surface
marker must be encoded by a transcript that is reprodu-
cibly up-regulated in c1 vs c3–5 (IDR < 0.01); and (2) the
transcript encoding the surface marker should be corre-
lated with sufficiently many genes, in a reproducible
manner, across all donors (Additional file 1: Figure S6; see
“Methods” and scRAD vignette for additional details).
Using this procedure, we obtained a list of 74 can-

didate c1 mDC markers (Fig. 3a). Based on antibody
availability, we selected five proteins (FCGR3, FCGR1,
CD274, ICAM1, SLAMF8) to profile 24 h after infec-
tion with pseudotyped HIV-1 by flow cytometry in
CD14- CD11cHi HLADR+ DCs from our cultures
(Fig. 3b and Additional file 1: Figure S7). Importantly,
the proportions of these cells and their expression of
CD11c were similar after different durations of cul-
ture (Additional file 1: Figure S7A). Among these,
both CD64 (FCGR1A) and PD-L1 (CD274) exhibited
the most dramatic and consistent virus-induced up-
regulation among CD14-, CD11cHi, HLA-DR+ mDCs
isolated from the PBMCs of the three ECs character-
ized by scRNA-seq, as well as those from five add-
itional EC donors (Fig. 3b; p value = 7.8 × 10–3; two-
tailed Wilcoxon matched-pairs signed rank test; n =
8). CD64 is an Fc-receptor for IgG [36], while PD-L1
has been implicated in mediating the balance between
T cell activation and immunopathology, as well as im-
mediate effector differentiation and long-term mem-
ory formation in T cells [37]. Importantly, high
expression of PD-L1 has also been found on tolero-
genic murine mDCs in chronic LCMV infection [38]
and in inflammatory lymph node-resident mDCs from
HIV-1 infected individuals [39]. Nevertheless, high ex-
pression of IFN and inflammatory cytokines identified
in our pathway analysis of c1 and high CD86 expres-
sion levels on CD64Hi and PD-L1Hi cells indicates
that these cells are highly activated inflammatory DCs
(Fig. 2 and Additional file 1: Figure S9D).

When we analyzed mDCs based on surface expression
levels of CD64 and PD-L1, we observed two dominant
mDC populations after viral stimulation: one CD64Hi,PD-
L1Hi and the other CD64Lo,PD-L1Lo (Fig. 4c). Population-
level transcriptional profiling of mDCs sorted on
CD64Hi,PD-L1Hi at both 24 and 48 h post-viral stimula-
tion revealed gene expression profiles dominated by the
signature of the c1 and, to a lesser extent, c2 response
states. In combination with the observation that mDCs
sorted on CD64Lo,PD-L1Lo matched a mixture of c3–5
(Fig. 3d), we concluded that CD64 and PD-L1 co-
expression enriches for c1 cells. While these two markers
are predominantly associated with c1 responses, we note
that they are not necessarily causally involved in inducing
either phenotype. In line with the single-cell observations
above, both sorted mDC subsets exhibited similar levels of
HIV-1 reverse transcription product at early time points
after ex vivo infection (Additional file 1: Figure S7), sug-
gesting differences in molecular sensing pathways,
rather than viral replication dynamics, as the under-
lying driver of the different responses observed among
c1-c4. Additionally, the c1-enriched/CD64Hi,PD-L1Hi

mDC phenotype observed in EC could be effectively in-
duced in mDCs alone (without supporting PBMCs)
exposed to VSV-G pseudotyped HIV-1 virus, indicating
that generation of the CD64Hi,PD-L1Hi mDC phenotype
does not require paracrine signals from neighboring
non-mDCs (Additional file 1: Figure S8). Collectively,
these findings suggest that c1 mDCs might have the po-
tential to drive enhanced antiviral antigen presentation
relevant to control of HIV-1 infection.

Functional characterization of c1 mDCs
Given the ties between strong antiviral activation and
immune control of HIV-1, we naturally wondered
whether the CD64Hi,PD-L1Hi mDC phenotype, common
to ECs, was uniquely enriched within these individuals
and might be linked to common features of immune
control against HIV-1. While this phenotype was

(See figure on previous page.)
Fig. 2 Characterization of transcriptional single-cell response groups. a Left: Schematic of signature database. The expression of a bulk sample of
simulated DCs (Si) is compared to the expression of a mock control (Mi). Highly ranked upregulated and downregulated genes comprise the
signature σi . Middle: σi is applied to all cells in the study and FastProject identifies pairs of expression data projections and σi for which σi varies
coherently across the projection. Right: Coherent σi values are binned by cluster to nominate specific cluster contrasts as biologically meaningful.
b Cumulative distribution function (CDF) comparisons for single cells from each cluster identified in Additional file 1: Figure S1 with FastProject
gene signatures derived from GSE14000 [57], GSE22589 [29], GSE18791 [58], and GSE2706 [59] (see “Methods”). The single-cell signature value
quantifies the extent to which each cell is polarized toward a stimulated instead of unstimulated expression state. Clusters with gene expression
signatures more closely mapping to the stimulated condition shift right, while clusters characteristic of unstimulated shift left. Kolmogorov–Smirnov
(KS) tests show significant differences in these signatures between the first three clusters (c1, n = 220; c2, n = 26; c3, n = 35). c Potential genes specific
for c1 (cyan), c2 (orange), shared between c1 and c2 (white) or inconsistent across individuals (gray). Individual volcano plots of negative log IDR vs
mean differential log-expression between clusters c1 and c3–5 (right) and c2 vs c3–5 (left; see “Methods”). d Selected ingenuity pathway analysis (IPA)
(see “Methods”) results for canonical pathways (Benjamini–Hochberg q value < 0.01) and upstream regulators (Bonferroni p value < 0.05) significantly
deactivated (blue), neutral (white: with z score; black: without z score), or activated (orange) in c1 vs c3–5. e Comparison of putative upstream regulators
from IPA for c1 vs c2–5 and c2 vs c3–5 (see “Methods”)
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consistently and efficiently induced in HIV-1 exposed
mDCs from ECs, markedly lower proportions of it were
observed in HIV-1 exposed mDCs from CPs and HDs
(Fig. 3e; n = 8 per group). Consistent with the more
effective induction of this phenotype in ECs, we found
higher levels of type-I IFN present in culture supernatants
from pre-isolated DCs exposed to HIV-1 from these
patients as compared to alternative cohorts (Additional
file 1: Figure S8B). Notably, these cohort-intrinsic differ-
ences were also observed when mDCs were exposed to
a more physiological CCR5-tropic HIV-1 viral strain
(Additional file 1: Figure S8; Additional file 5: Table S4),
suggesting that this phenomenon is not restricted to VSV-
G pseudotyped HIV-1 strains. Correlating the fractional
abundance of CD64Hi,PD-L1Hi mDCs after HIV-1 expos-
ure against clinical phenotypes, we observed a significant
positive association with CD4+ T cell count across both
CPs (one-sided) and ECs + CPs (two-sided; p value = 2 ×
10–2 and 8 × 10–3, respectively; Spearman correlation per-
mutation p value). Plasma HIV-1 viral loads, meanwhile,
were negatively associated with percentages of
CD64Hi,PD-L1Hi mDCs across all patients (p value = 3 ×
10–2, Spearman correlation two-sided permutation p
value), with borderline-significant association in CPs alone
(p value = 6 × 10–2, Spearman correlation permutation
one-sided p value, Fig. 3f). These associations show that a
patient’s CD64Hi,PD-L1Hi mDC fraction after viral stimu-
lation tracks traditional biomarkers along a spectrum of
HIV-1 control, suggesting that the ability to induce c1-like
cells might be a useful biomarker of enhanced protective
immune responses against HIV-1.
We next sought to directly probe the association be-

tween the induction of c1 responses and the enhanced
functionality observed in bulk mDCs from EC. We first

examined the putative enhanced antigen presentation
and T cell activation abilities of the c1-like subset of
mDCs by performing mixed leukocyte reactions to com-
pare our CD64,PD-L1 high and low mDC subpopulations
(see “Methods”). In these experiments, the c1-enriched/
CD64Hi,PD-L1Hi mDC population demonstrated superior
ability to stimulate CD4+ and CD8+ T cell proliferation
relative to CD64Lo,PD-L1Lo mDCs across multiple ECs
(Fig. 3g, Additional file 1: Figure S9, p value = 1.6 × 10–2

and p value = 3.1 × 10–2, respectively; two-tailed Wilcoxon
matched-pairs signed rank test; n = 6). Similar results were
observed in assays conducted with T cells from ECs, where
CD64Hi,PD-L1Hi mDCs were capable of efficiently stimu-
lating the production of IFNγ in a significantly higher pro-
portion of autologous CD8+ T cells as compared to
CD64Lo,PD-L1Lo mDCs (Fig. 3h; p value = 3 × 10–2; two-
tailed Wilcoxon matched-pairs signed rank test; n = 5).
Further, IFNγ+ CD8+ T cells primed in the presence of c1-
enriched/CD64Hi,PD-L1Hi mDCs expressed significantly
higher levels of both the degranulation markers
CD107a and TNFα (Fig. 3i,j and Additional file 1:
Figure S9; p value = 1.5 × 10–2; two-tailed Wilcoxon
matched-pairs signed rank test; n = 7), mirroring the
polyfunctional CTL responses observed in ECs [17, 18].
We note that these differences are not significantly
associated with disparities in HLA levels or viability
among the CD64Hi,PD-L1Hi and CD64Lo,PD-L1Lo mDC
subsets, but correlate with PD-L1 MFI levels in these
populations (Additional file 1: Figure S9).

Signature meta-analysis of candidate adjuvants for c1
mDCs
Given the possible therapeutic and prophylactic poten-
tial of c1-like DCs for studies in non-EC populations

(See figure on previous page.)
Fig. 3 CD64 and PD-L1 enrich in highly functional c1-like mDCs. a Selection of c1-specific genes encoding surface proteins for validation as c1
markers. 74 genes (listed in box) were: (1) differentially expressed between c1 and c3–5; (2) reproducibly correlated with other c1 genes across all
three ECs profiled; and (3) predicted membrane proteins (see “Methods”). Candidate markers shown in green were selected for validation by FACS
(Fig. 2a, Additional file 1: Figure S7). b Flow cytometry analysis of either CD64 (y-axis, left panel) or PD-L1 (y-axis, right panel) vs CD86 (x-axis) expression
in mDCs from EC patient 1 (p1). Numbers above represent the percentage of CD64Hi/PD-L1Hi cells (top right gate; light blue) at 24 h in media (gray) and
VSV-G pseudotyped HIV-1 virus exposure (red) conditions. c Flow cytometry plots showing analysis of CD64 vs PD-L1 expression on mDCs exposed to VSV-
G pseudotyped HIV-1 for 24 h, defining two populations: CD64Hi,PD-L1Hi (Hi; blue) and CD64Lo,PD-L1Lo (Lo; green). Percentage in each gate is listed above.
d Radar plots (see “Methods”) representing relative similarities of each subset (c1–5) to population-level RNA-Seq data from cells in the Hi and Lo
PD-L1,CD64 gates 48 h after viral (solid line) or media exposure (dashed line). e Proportions of CD64Hi,PD-L1Hi mDCs induced from multiple ECs
(n = 8), untreated CPs (n = 8), and HDs (n = 7) after 24 h of culture in media or VSV-G pseudotyped HIV-1 (*, p < 0.05; **, p < 0.01; two-tailed
Wilcoxon signed-rank test). f Correlation between the proportions of CD64Hi,PD-L1Hi mDCs induced in ECs (n = 8) and untreated CPs (n = 8) or
just CPs and clinical CD4 T cell count (p value = 8 × 10–3 [two-sided] and 2 × 10–2 [one-sided], respectively, Spearman correlation permutation
p value) or between the proportions of CD64Hi,PD-L1Hi mDCs induced in ECs (n = 8) and untreated CPs (n = 8) or just CPs and HIV-1 viral load
(p = 3 × 10–2 [two-sided] and 6 × 10–2 [one-sided], respectively, Spearman permutation p value). Diamond and square points represent indeterminate
viral loads of < 20 and < 50 copies/mL, respectively. g Proportion of proliferating CD4+ (left) and CD8+ (right) T cells co-cultured with the Hi and Lo
sorted virus-exposed mDCs populations (n = 6 patients). h Proportion of total IFNγ+ CD8+ T cells cultured with the Hi and Lo sorted virus-exposed
mDCs populations (n = 7 patients). Statistical significance for (g, h) were evaluated using a two-tailed Wilcoxon matched pairs signed-rank test
(*, p < 0.05). i Pie chart generated with data from n = 7 patients showing CD107a and TNFα expression on CD8+ T cells cultured with Hi (left) or Lo
(right) mDCs. j Scatter plots of proportions of CD107a+, TNFα+ (left) and CD107a+, TNFα- (right) CD8+ T cells cultured with Hi and Lo mDCs. Statistical
significance was evaluated using a two-tailed Wilcoxon matched pairs signed-rank test, n = 7 patients (*, p < 0.05)
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with less efficient responses to in vitro viral stimulation
(Fig. 3e), we next sought to uncover the common signal-
ing pathways involved in the acquisition of the c1-
enriched/CD64Hi,PD-L1Hi mDC phenotype so that we
might engineer its frequency. IPA results for c1 had
highlighted several signatures of human DC stimulation,
including multiple components of several TLR signaling
pathways (Fig. 2d; Additional file 1: Figure S5, Additional
file 6: Table S5); thus, we aimed to compare our single-
cell expression profiles to perturbed bulk expression data
in order to determine which TLR pathways were most
compatible with the c1 signature vs c3–5.
We define, for every cell and every TLR ligand we tested

(see “Methods”), a “stimulation score,” which reflects the
similarity between the cell’s transcriptional profile and the
one induced by the ligand (using weighted correlation; see
“Methods”). We then score each ligand by the extent to
which its respective stimulation scores in c1 cells are
higher than in clusters c3–5 (using a Kruskal–Wallis test).

Finally, using the differential signature analysis module in
scRAD, we combine the resulting p values across donors.
Notably, for this analysis we used the Stouffer-Z p value
combination method (Fig. 4a, see “Methods”) since the
number of hypotheses (i.e. TLR ligands) is small, leading
to instabilities in the IDR inference (see scRAD Vignette).
Our meta-analysis showed that c1 cells correlated most

positively with TLR3 stimulation via Poly I:C compared to
the c3–5 (FDR < 0.01; Fig. 4b), generating the actionable
hypothesis that triggering the endosomal dsRNA sensor
TLR3 might selectively activate downstream pathways that
synergize with innate viral sensing mechanisms to in-
crease the fraction of mDCs maturing towards a c1-
enriched/CD64Hi,PD-L1Hi phenotype (Fig. 5). Analyses of
microarray data from mouse DCs stimulated with a com-
prehensive panel of TLR ligands also suggested that the c1
state most strongly positively correlated with TLR3 activa-
tion [33] (see “Methods”; Additional file 1: Figure S10). To
directly test this hypothesis, we incubated PBMCs from

a b c

d e f g

Fig. 4 Immunomodulators can alter the fractional abundance of the c1 mDC phenotype. a Top: Schematic of bulk expression data (Bi) from
publicly available perturbation data. Bottom: Each cell’s expression profile (C1j) is correlated with all Bi so as to compare similarities of the single-cell
cluster 1 to all bulk expression profiles. b Volcano plot of negative log meta-analysis false discovery rate (FDR) vs mean difference in “TLR stimulation
score” between c1 and c3–5. Scores are computed from weighted correlations between single-cell profiles and transcriptional patterns from human
DCs (see “Methods”) after 48 h of stimulation with media control (black) or agonists for either TLR2 (PAM3CSK4, dark blue), TLR3 (Poly I:C, green), TLR4
(LPS, orange), TLR7/8 (Gard, purple), or TLR9 (CpG, light blue). Tests reproduced with FDR < 0.01 in both stratified analyses are highlighted in blue.
c Proportion of CD64Hi,PDL1Hi cells among mDCs from PBMCs isolated from HIV-negative individuals cultured in the absence or the presence of VSV-G
pseudotyped HIV-1, alone or in combination with TLR ligands (TLRL: TLR2L, PGNA, n = 11; TLR3L, Poly I:C, n = 11; TLR4L, LPS, n = 8; TLR8L, CL097, n = 11;
Methods). Statistical significance was calculated using Kruskal–Wallis and Dunn’s tests (**, p < 0.01). d Proportions of CD64Hi, PD-L1Hi cells among mDCs
from healthy individuals (indigo) and elite controllers (olive) cultured in the absence or the presence of Poly I:C and polymer nanoparticles loaded with
single-stranded (ss) or double stranded (ds) 100 nucleotide HIV-1 DNA (see “Methods”; n = 8, HIV negative individuals; n = 7, ECs). Statistical significance
was calculated using either two-tailed Wilcoxon signed-rank test (black) or two-tailed Mann–Whiney test (red) to compare differences within or among
patient groups, respectively (**, p < 0.01; *, p < 0.05). e Proportion of proliferating CD4+ or CD8+ T cells after culture with Hi or Lo mDC from a HD
stimulated with TLRL3 and nanoparticles containing gag single-stranded DNA (*, p < 0.05; two-tailed Wilcoxon signed-rank test. n = 6). f Volcano plot of
negative log IDR vs mean difference in upstream regulatory score between c1 and c3–5 based on single-cell correlations with short hairpin RNA-
perturbation profiles from mouse DCs stimulated with LPS for 6 h (adapted from Chevrier et al. [32]; see “Methods”). The net effect (activate, inhibit,
both) of each perturbation is denoted by color (red, blue, gray, respectively), as is its breadth (size). g Proportions of CD64Hi,PD-L1Hi cells among EC
mDCs cultured in the presence or absence of virus and DMSO (control, magenta) or BX795 TBK1 inhibitor (cyan; n = 10; see “Methods”). Statistical
significance was calculated using a two-tailed Wilcoxon signed-rank test (*, p < 0.05)
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several HDs (n = 7)—which do not spontaneously generate
significant numbers of c1-enriched/CD64Hi,PD-L1Hi cells
in vitro in the presence of VSV-G pseudotyped HIV-1
(Fig. 3e)—with virus and different TLR agonists for 24 h.
In contrast to the other TLR ligands tested, we observed
that co-incubation of mDCs with virus and Poly I:C led to
a significant increase in the proportion of c1-enriched/
CD64Hi,PD-L1Hi mDCs in PBMCs from healthy individ-
uals (TLR3L: p value = 0.0091, n = 11; Kruskal–Wallis and
post-hoc Dunn’s test; TLR2L, TLR4L, and TLR8L, not sig-
nificant; n = 11, 8, 11, respectively) (Fig. 4c). Similar results
were observed after a longer 48 h incubation (Additional
file 1: Figure S10). Meanwhile, in ECs, a TLR3, but not a
TLR4, inhibitor had a modest, but significant, effect on
the acquisition of the c1-enriched/CD64Hi,PD-L1Hi mDC
phenotype (p value = 3.9 × 10–3; two-tailed Wilcoxon
signed-rank test (**, p < 0.01; n = 9; Additional file 1:
Figure S10).
To explore the generality and therapeutic applicability of

our adjuvant strategy, we next examined whether we could
couple the same TLR3 activation with direct DNA-based
targeting of the cytosolic innate immune recognition ma-
chinery that senses viral DNA products [40] rather than
use the virus itself. To address this, we incubated PBMCs
from HDs or ECs simultaneously with a TLR3 agonist (Poly
I:C) and single- or double-stranded HIV-1 Gag DNA
(ssDNA or dsDNA, respectively) encapsulated in polymeric
nanoparticles (see “Methods”). A similar delivery vehicle
has previously been shown to selectively activate cGAS-
and STING-dependent immune recognition pathways,
which are involved in innate immune sensing of HIV-1 dur-
ing natural infection [41]. When we analyzed the fraction
of mDCs differentiating into c1-enriched/CD64Hi,PD-L1Hi

cells, we found that activation with either ss/dsDNA or Poly

I:C (TLR3 agonist) alone in PBMCs from HDs was less effi-
cient at inducing c1-enriched responses (p value = 7 × 10–2,
nano vs Poly I:C alone; p value = 5 × 10–2, nano vs ssDNA;
p value = 1 × 10–2, nano vs dsDNA; two-tailed Wilcoxon
matched-pairs signed rank test; n = 8; Fig. 4d, comparisons
not highlighted). Combining both stimuli, however, signifi-
cantly increased the proportion of c1-enriched/CD64Hi,PD-
L1Hi mDCs in PBMCs isolated from HDs (p value = 1.6 ×
10–2 and p value = 3.1 × 10–2 for ss- and dsDNA, respect-
ively; two-tailed Wilcoxon matched-pairs signed rank test;
n = 8; Fig. 5d). Similar results were obtained with cells from
ECs (p value = 0.0469 for both ss- and dsDNA; two-tailed
Wilcoxon matched-pairs signed rank test; n = 7; Fig. 5d),
with the notable exception that, in ECs, exposure to
dsDNA alone led to significantly higher levels of c1-like/
CD64Hi,PD-L1Hi mDCs relative to cells cultured only in
media (p value = 3 × 10–2; Wilcoxon matched-pairs signed
rank test; n = 7; Fig. 5d, comparison not highlighted), sug-
gesting a heightened baseline predisposition of EC to re-
spond to intracellular DNA. In mixed leukocyte reactions,
the CD64Hi,PD-L1Hi mDCs generated from HDs incubated
with TLRL3 and nanoparticles containing gag dsDNA stim-
ulated greater proliferation in CD4+ and CD8+ T cells com-
pared to the CD64Lo,PD-L1Lo mDCs from the same assay
(p value = 3.5 × 10–2 and p value = 3.1 × 10–2, respectively;
two-tailed Wilcoxon signed-rank test; n = 6), suggesting
that adjuvant induced CD64Hi,PD-L1Hi mDCs in HDs are
highly functional antigen presenting cells like their EC
counterparts (Fig. 5e).

Reproducible differential signature analysis reveals
immunomodulators of c1 mDCs
To identify additional nodes for rationally modulating
the acquisition of the c1 functional state, as well as to

a b

Fig. 5 Unifying model of results. a Potential energy diagram conceptualizing how adjuvants and other perturbations alter the percentage of mDCs
that enter the c1–5 response states upon viral or viral-like exposure. b Network diagram depicting tested nodes implicated in the c1 mDC response
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examine the general applicability of the IDR-framework for
uncovering putative regulators of c1’s (or any other state’s)
induction, we again applied the differential signature module
of scRAD (see scRAD Vignette); in this instance, due to lim-
ited public availability of human perturbation data, we
turned to a published dataset of the transcriptional effect of
~ 200 transcription factor and signaling molecule perturba-
tions in LPS-stimulated mouse DCs that are highly con-
served with humans [32, 33]. We ranked the
perturbations by the degree to which they reproducibly fa-
vored the generation of one or more (here, c1) responses
over others (here, c3–5; see “Methods”). Unlike in the
TLR analysis, here we had a sufficient number of hypoth-
eses, and therefore utilized scRAD’s core IDR-based func-
tionality [24]. The resulting meta-analysis nominated
several putative regulators for modulating the fractional
abundance of c1 mDCs in response to a virus or virus-like
stimulation (Fig. 4g). Among our top positive regulators of
c1 was TBK1, a recognized signal mediator that is acti-
vated downstream of multiple innate immune sensing
pathways at the convergence of the organelle-associated
adaptors MAVS, TRIF (downstream effector of TLR3,
TLR4), and STING (effector of the intracellular DNA sen-
sor cGAS) [42–44], some of which were previously de-
tected in our IPA Upstream Analysis (Fig. 4d). Notably,
the cGAS-STING pathway is known to play a key role in
the recognition of cytoplasmic HIV-1 DNA in myeloid
cells, including those from ECs [20, 40], and cGAS itself
(MB21D1) was upregulated in c1 cells (LFC = 1.9, IDR <
0.05). To evaluate whether signaling through TBK1 signifi-
cantly contributes to the maturation of mDCs into the c1-
enriched/CD64Hi,PD-L1Hi subset in ECs, we added
BX795, a TBK-1 antagonist, to PBMCs from ECs at the
time of viral addition and examined the impact on mDC
responses (see “Methods”). As shown in Fig. 4h, inhibition
of TBK1 during viral exposure led to a dramatic and sig-
nificant abrogation of the induction of the c1-enriched/
CD64Hi,PD-L1Hi mDC population in ECs (p value = 2.0 ×
10–3; two-tailed Wilcoxon signed-rank test; n = 10), sug-
gesting that TBK1 is a key driver of the acquisition of the
c1 phenotype in mDCs and validating the promise of our
computational framework.

Conclusions
In summary, by studying elite immune control of HIV-1 in-
fection as an example of enhanced immunity with a
reproducibility-based framework that identifies gene expres-
sion features shared across patients that are linked by a
common attribute, we identified a highly functional
CD64Hi,PD-L1Hi mDC response state that is primed to drive
adaptive immunity—a previously unrecognized correlate of
effective antiviral response against viral stimuli. Extending
and developing computational approaches to hypothesize
reproducible biomarkers and upstream regulators, we have

realized a rational, extendable framework for modulating
the relative abundance of this state. These tools, provided as
part of the new R package, scRAD, can be applied to a wide
variety of common scRNA-seq analyses and derive robust-
ness from a reliance on multiple donors. An important fea-
ture of the IDR framework [24] is that it is based on rank
transformed data rather than the original signal (e.g. p
values); this facilitates the statistical analysis of reproducibil-
ity in any ranked set of hypotheses, beyond the three ana-
lysis modules presented here (DE, biomarkers, and
upstream regulators). Notably, while the original IDR R-
package accounts only for a two-donor scenario, our exten-
sion (see “Methods” and scRAD Vignette) facilitates meta-
analysis of common signals across larger numbers of
donors.
The heterogeneity of mDC responses identified in our

study should invoke recent work by Villani et al. [7] that de-
scribes at least four subsets of circulating mDC in HDs.
Interestingly, our c1-mDC response state shares important
characteristics with the DC4 (CD11c+MHCII+CD1C-

CD141-CD16+) subset described in that work, exhibiting its
characteristic anti-viral signature as well as reproducible up-
regulation of all five published marker genes [7]. Given the
dissimilarities between cohorts and experimental condi-
tions, future studies will be required to fully elucidate the
functional and transcriptional relationships between these
mDC groups and their ontogeny.
Importantly, our study demonstrates a clear associ-

ation between the ability of ECs to efficiently acquire
the CD64Hi,PD-L1Hi mDC phenotype in vitro and
clinical parameters of immunological control of HIV-
1 infection. This suggests that an increased ability to
induce the c1 transcriptional programs in mDCs
might be indicative of beneficial immune responses
associated with control of HIV-1 replication in ECs.
An important limitation of our study design is that it
only establishes associations, rather than causal rela-
tionships, between our observations and clinical and
immunological parameters, i.e. it does not directly
demonstrate a role for mDC in driving or promoting
immune control of HIV-1 infection in ECs in vivo.
Future studies will also be needed to directly examine
the role of c1 DCs in other lymphoid tissues, such as
lymph nodes, since our current work focused on
PBMCs. Were this to prove true, our adjuvanting and
perturbation experiments suggest exciting therapeutic
possibilities for non-ECs via co-stimulation of TLR
and DNA sensor agonists, and perhaps TBK1 directly.
Intriguingly, high expression of PD-L1 has also been
described on a subset of lymph node-resident mDCs
from HIV-1 infected individuals spanning a range of
viral loads [39]. While this study proposes that the
lymph node resident PD-L1+ DC subset may dampen
immune responses based on PD-L1 expression, as
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CD64 co-expression was not measured, the relationship of
this state to c1 remains unknown. PD-L1 has also been asso-
ciated with an alternative, tolerogenic IL-10-producing
mDC population induced under long-term and chronic in-
fection settings in mice [38]; this state is fundamentally dis-
tinct from the highly activated CD64Hi PD-L1Hi DC subset
identified in our study which is characterized by expression
of multiple inflammatory molecules (Fig. 2), high levels of
activating costimulatory molecules (Fig. 3, Additional file 1:
Figure S7 and Figure S9), and efficiently induces T cell pro-
liferation and polyfunctionality. In general, the putative func-
tional differences between the two states highlights the
importance of surveying complete extra- and intra-cellular
states in ascribing function, given potential redundancy. A
critical limitation is the lack of an equivalent in vivo system
where a direct and causal relationship between mDC re-
sponses and the induction of protective HIV-1-specific
adaptive immunity can be safely and ethically tested; never-
theless, similar principles may inform future experiments
performed with other viruses or virus-like elements (e.g. in a
vaccine) in both humans and other organisms.
Mechanistically, further investigation will be required

to identify what biases mDCs from ECs to respond at
higher frequency with a c1-enriched phenotype. Given
our adjuvanting and perturbation experiments, this en-
hanced antiviral response capacity could derive from
variations in the basal abundance of different DC subsets
which, in turn, each have an unequal propensities to
generate the c1 responses to nucleic acids; it could simi-
larly derive from dissimilarities in the intrinsic response
properties of one or more progenitor or terminally dif-
ferentiated states, informed by a combination of EC-
specific epigenetic modifications and/or complex sets of
genetic variants. Since our experimental validations sup-
port an inferred role for TLR3 in synergizing with cyto-
solic viral recognition machinery to induce a TBK1-
dependent c1-enriched/CD64Hi,PD-L1Hi response, we
propose that simultaneous induction of DNA and dsRNA
sensing through the cGAS-STING [20, 42] and TLR3
pathways might potentiate (Fig. 5a) the maturation (or se-
lective survival) [45] of c1-enriched/CD64Hi,PD-L1Hi cells
by converging on TBK1 (Fig. 5b) and that these elements
might be a natural nexus to explore for EC-specific mol-
ecule features. Still, our work demonstrates the potential
of scRNA-seq to discover, genome-wide, functional cellu-
lar immune response states, associated markers, and shifts
in abundance that may inform the overall efficacy of host
immunity.

Methods
Study participants
HIV-1 elite controllers (ECs) who had maintained < 2000
copies/mL HIV-1 viral load (VL; 20–98 copies/mL,

median 48 copies/mL) for a median of five years (range =
2–14 years) in the absence of antiretroviral therapy (EC;
CD4+ T cell counts: 515–1543 cells/mL, median 909 cells/
mL; n = 8 persons), untreated CPs (VL: 2190–3,117,608
copies/mL, median 162,807 copies/mL; CD4+ T cell
counts: 3–623 cells/mL, median 146.5 cells/mL; n = 8 per-
sons), and HIV-1 seronegative HDs (Neg; n = 7 persons)
were recruited for this study (Additional file 5: Table S4).
All individuals gave written informed consent; the Institu-
tional Review Board of Massachusetts General Hospital/
Partners Healthcare approved the study protocol.

In vitro infection with HIV-1 virus
Freshly isolated PBMCs were infected with GFP-
encoding vesicular stomatitis virus G envelop (VSV-G)
pseudotyped or R5-tropic HIV-1 virus (multiplicity of in-
fection [MOI] = 2.4 and 0.4, respectively), kindly pro-
vided by Dr. Dan Littman (New York University, New
York, NY, USA), for 2 h at 37 °C. At 24 and 48 h post-
infection, CD14-,CD11cHi,HLADR+ mDC were singly
sorted (see “Flow cytometric analysis and sorting”) from
total PBMC into 96-well plates containing lysis buffer
for scRNA-seq as previously described [46] (Fig. 1a). In
some experiments, sorted CD14- CD11cHi HLADR+

mDCs were presorted before ex vivo infection with
VSV-G pseudotyped HIV-1.

TLR perturbations
In the TLR agonist experiments, mDCs from PBMCs
(see “Flow cytometric analysis and sortingg”) were
treated with HIV-1 alone or HIV-1 in combination with
2 μg/mL of a TLR2 (PGNA), TLR3 (Poly I:C), TLR4
(LPS), or TLR8 (CL097) ligand (InvivoGen, San Diego,
CA, USA) (Fig. 4c, Additional file 1: Figure S10). In the
TLR antagonist studies, mDCs from PBMCs were
treated with VSV-G pseudotyped HIV-1 (see “In vitro in-
fection with HIV-1 virus”) alone or in combination with
a TLR3 (CUCPT4A, 60 nM, Tocris), TLR4 (600 ng/mL,
LPS-RS, InvivoGen), or TBK-1 inhibitor (BX795, 1 μM,
InvivoGen) (Fig. 4b, g, Additional file 1: Figure S10).
For our ssDNA and dsDNA stimulation experiments

(Fig. 4d), mDCs from either HDs (n = 8) or ECs (n= 7) were
cultured for 24 h in the presence of Poly I:C and 2 μg/mL of
either ss- or ds-Gag DNA [41] that had been encapsulated
into polymeric nanoparticles (TransIT-X2, Myrus) following
the manufacturer’s instructions. Importantly, this approach
has been shown to enable intracellular delivery of nucleic
acids in primary human innate immune cells, overcoming a
critical barrier for nucleic acid delivery and sensing [47].
In our human TLR stimulation experiments (Fig. 4b),

whole PBMCs from a HD were incubated for 48 h with
or without 2 μg/mL of a TLR2 (PGNA), TLR3 (Poly I:C),
TLR4 (LPS), or TLR8 (CL097) ligand (InvivoGen, San
Diego, CA, USA). Following incubation, mDCs were
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sorted (see “Flow cytometric analysis and sorting”) into
two replicate 5000–10,000 cell populations and sequenced
(see “Single-cell and population RNA samples”).

Flow cytometric analysis and sorting
PBMCs were stained with LIVE/DEAD cell blue viability
dye (Invitrogen, Carlsbad, CA, USA) and monoclonal
antibodies directed against CD11c (BioLegend, San
Diego, CA, USA), CD14 (BD Biosciences, San Jose, CA,
USA), HLA-DR, CD64, PD-L1, ICAM1, CD16, SLAMF8
(BioLegend) and subsequently analyzed on a Fortessa
cytometer (BD Biosciences). Data were analyzed with
FlowJo software (Tree Star, Ashland, OR, USA). mDCs
were identified from bulk PBMCs as a population of vi-
able CD14- cells expressing high levels of CD11c and
HLA-DR.
For the functional studies on mDC subsets, BVD-

negative CD14- CD11c+ HLADR+ mDCs were sorted
into two subpopulations expressing high and low levels
of CD64 and PD-L-1 (Fig. 3c).
In the experiments evaluating polyfunctional CD8+ T

cell responses in EC, cultured cells (see “Activation of
CD8+ T cells from EC with autologous CD64,PD-L1
Mdc”) were first labeled with LIVE/DEAD cell blue via-
bility dye and anti-CD8 and CD-3 monoclonal Abs (Bio-
Legend, San Diego, CA, USA). Subsequently, T cells
were fixated and permeabilized and incubated with
monoclonal antibodies against TNFα, IFNγ (BioLegend)
and CD107a (BD Biosciences).

Mixed leukocyte reaction assays
FACS purified viable CD64Hi,PD-L1Hi and CD64Lo,PD-
L1Lo mDC subpopulations, generated after 24 h of infec-
tion with a VSV-G HIV-1 virus or 24 h of incubation
with TLR3 ligands (2 μg/mL poly I:C and nanoparticle-
loaded gag-dsDNA adjuvants), were mixed with allogen-
eic total peripheral blood T lymphocytes previously
stained with 5 μM carboxyfluorescein succinimidyl ester
(CFSE, Invitrogen) at a T:DC ratio of 4:1. As a control, T
cells were also cultured in the presence of media alone
or 2.5 μg/mL PHA (Sigma) and 50 IU/mL IL-2 (NIH
AIDS reagent program). After incubation for six days,
cells were washed, stained with viability dye and anti-
CD4 and anti-CD8 antibodies (BioLegend, San Diego,
CA, USA), and CFSE dilution on CD4+ and CD8+ T cell
subpopulations was analyzed by flow cytometry using a
Fortessa flow cytometer.

Autologous CD64, PD-L1 mDC subsets
Total CD8+ T cells were isolated by magnetic cell sorting
(DynaBeads, Thermo Fisher) from unstimulated PBMC
from ECs (n = 5) and cultured in the absence or the pres-
ence of autologous CD64Hi,PD-L1Hi and CD64Lo,PD-L1Lo

mDC sorted from an alternative PMBC culture previously
infected with a VSV-G pseudotyped HIV-1 virus for 24 h,
as previously described (see “In vitro infection with HIV-1
virus”) at a ratio (T:DC = 4:1). After 2 h of incubation, cul-
tures were supplemented with Brefeldin A (BioLegend)
and Monensin (BD-Biosciences) and left in culture for an
additional 16 h. Phenotypic analysis of Polyfunctional
CD8+ T cell responses was determined by flow cytometry
of intracellular expression of IFNγ, TNFα and CD107a
(see “Flow cytometric analysis and sorting”; Fig. 3h–j,
Additional file 1: Figure S9).

Quantification of HIV-1 by qPCR
HIV-1 reverse transcripts present in sorted mDC popu-
lations were amplified from cell lysates at 24 h post-
infection as previously described [48]. Copy numbers of
reverse transcripts were obtained after extrapolation to
specific standard curves generated from HIV-1-infected
293 T cells [20]. qPCR data were normalized to relative
CCR5 gene copy number.

Statistics of in vitro functional assays
The significance of differences in the fractional abun-
dance of sorted mDC subsets across different cohorts
and in our functional assays—including the mixed
leukocyte reactions, culture of CD8+ T cells from EC
with autologous mDC and the TLR ligand and DNA
stimulation assays—were determined using two-tailed
Wilcoxon matched-pairs signed-rank test. In some
experiments, we applied a Kruskal–Wallis test with
post-hoc Dunn’s test—adjusting for test multiplicity—us-
ing GraphPad Prism 6 software. The specific test used
for each comparison is noted in the text.

Single-cell and population RNA samples
Following sorting, whole transcriptome amplification
(WTA) was performed on 96-well plates of single cells
as described previously [46]. Briefly, individual lysed cells
were cleaned with 2.2× volume AMPure XP SPRI beads
(Beckman Coulter, Danvers, MA, USA) and isolated cel-
lular messenger RNAs (mRNA) were reverse transcribed
and amplified.
For the population samples, total RNA was isolated

using a RNeasy plus Micro RNA kit (Qiagen, Hilden,
Germany) following the manufacturer’s instructions. A
total of 2 μL of this isolated RNA was then added to
8 μL of water and cleaned with 2.2× volume beads.
Finally, 1 μL of this cleaned RNA was used in a WTA re-
action [46].
Following WTA, PCR products were cleaned with 0.9×

volume SPRI beads and eluted in water. The concentration
of complementary DNA (cDNA) in the resulting solution
was determined using a Qubit 3.0 Fluorimeter (Thermo-
Fischer, Waltham, MA, USA) and analyzed using a high
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sensitivity DNA chip for BioAnalyzer (Agilent, Santa Clara,
CA, USA).

cDNA library preparation for RNA-seq
WTA products were diluted to a concentration of 0.1 to
0.4 ng/μL, tagmented and amplified using Nextera XT
DNA Sample preparation reagents (Illumina, San Diego,
CA, USA). Tagmentation was performed according to
manufacturer’s instructions, modified to use one-quarter
of the recommended volume of reagents, extending tag-
mentation time to 10 min and extending PCR time to
60s. PCR primers were ordered from Integrated DNA
Technologies (Coralville, IA, USA). Nextera products
were then cleaned twice using 0.9× SPRIs and eluted in
water. The final library was quantified using Qubit and
analyzed using a high sensitivity DNA chip. It was then
diluted to 2.2 pM and sequenced on a NextSeq 500
(Illumina).

Single-cell expression quantification
RNA-seq reads were aligned to the RefSeq hg38 tran-
scriptome (GRCh38.2) using Bowtie2 [49]. The resulting
transcriptomic alignments were processed by RSEM to
estimate the abundance (expected counts and transcripts
per million [TPM]) of RefSeq transcripts [50].
Several genes were quantified multiple times due to al-

ternative isoforms unrelated by RefSeq annotation. Be-
fore expression data normalization, these TPM estimates
were summed to produce a single TPM estimate per
RefSeq gene symbol.

Single-cell filtering and gene filtering
For each single-cell library, we computed transcriptome
alignment and quality metrics using FastQC (Babraham Bio-
informatics), Picard tools (Broad Institute), and custom
scripts. Computed metrics included: (1) number of reads;
(2) number of aligned reads; (3) percentage of aligned reads;
(4) number of duplicate reads; (5) primer sequence contam-
ination; (6) average insert size; (7) variance of insert size; (8)
sequence complexity; (9) percentage of unique reads; (10)
ribosomal read fraction; (11) coding read fraction; (12) UTR
read fraction; (13) intronic read fraction; (14) intergenic read
fraction; (15) mRNA read fraction; (16) median coefficient
of variation of coverage; (17) mean 5’ coverage bias; (18)
mean 3’ coverage bias; and (19) mean 5’ to 3’ coverage bias.
We used the metric_sample_filter function from the

SCONE package [22] to flag libraries with low numbers
of aligned reads (< 28,840), low percentages of aligned
reads (< 15%), and low percentages of detected tran-
scripts (< 33.4% of Ensembl GRCh38.80 protein-coding
genes expressed at > 100 TPM in at least 10% of samples
– or “common genes”) (Additional file 1: Figure S2A–
C). We identified 99 genes of candidate constitutive
expression by fitting a population-wide Fano factor as a

linear function of mean TPM, selecting the 99 common
genes with minimal fit residual. These genes covered a
range of 50.0–35,000 TPM. For each sample, the rela-
tionship between mean detected TPM and detection rate
(or “false-negative characteristic”) was modeled as a
logistic function; the area under this fitted curve was uti-
lized to distinguish samples with poor detection proper-
ties (Additional file 1: Figure S2D, E). Out of 2489 initial
samples, only 393 (318 at 48 h and 75 at 24 h) samples
passed this primary filter. We note that some of this loss
is due to our decision to exclude viability stain for some
scRNA-seq sorts. Importantly, this viability selection did
not appear to skew the sub-composition of cell states
passing our sample filtering criteria (see “Clustering ana-
lysis and visualization”).
Following cell filtering, genes were retained for down-

stream analysis if they were annotated as protein-coding
and expressed at levels > 100 TPM in at least five high-
quality cells.

Single-cell data normalization
In order to normalize TPM data, we applied the full-
quantile normalization method, restoring original zero
values to zero following normalization. This restoration
step was necessary due to widespread zero-ties. We used
normalization metrics of the SCONE [22] package to
assess performance of this strategy.
The first three scores measure the maximum absolute

correlation between the first three principal components
(PCs) of the TPM matrix and the first three PCs of: (1)
the matrix of library-level qc metrics; (2) the un-
normalized matrix of TPM estimates for “negative con-
trol” genes from the MSigDB9 “HSIAO_HOUSEKEE-
PING_GENES” gene set; and (3) the un-normalized
matrix of TPM estimates for “positive control” genes from
the MSigDB “REACTOME_INNATE_IMMUNE_SYS-
TEM” gene set. Following normalization, the first two
scores decreased while the third increased slightly, sug-
gesting that technical structure has been removed from
the data while retaining structure associated with the bio-
logical processes at hand (Additional file 1: Figure S2F).
The next three scores measure the average silhouette

width for various classifications across a Euclidean
metric defined on the first three PCs of the TPM matrix:
(1) biological class = patient ID × exposure × time point ×
viability; (2) batch class; and (3) average silhouette width
where each stratification of batch and biology has been
separately clustered using the partitioning around medoids
(PAM) clustering algorithm. Following normalization, the
first two scores decrease, suggesting that confounding
by biological and batch factors could not be addressed
by this normalization. However, the rise of the third
score suggests greater intra-stratum clustering follow-
ing normalization (Additional file 1: Figure S2G).
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The last two scores—(1) the median absolute relative
log-expression (RLE) and (2) the variance of the RLE
interquartile range—both decreased, implying reduced
global DE following normalization (Additional file 1:
Figure S2H).

Clustering analysis and visualization
Principal component analysis (PCA) was applied to all
filtered and normalized single-cell log-TPM data col-
lected at the 48-h time point; consequent analysis was
limited to the first 50 PC values (defined per cell)
explaining 32% of expression variance. For each choice
of dimension d, in the range of 2–50, a Euclidean cell-
distance matrix was computed over the first d PCs. The
PAM clustering algorithm was used to cluster cells over
a range of k = 2–10 clusters. Let S(k,d) represent the
average silhouette width of a PAM k-clustering on d di-
mensions. We define k(d) as the unique choice of k that
maximizes S(k,d) for any choice of d. We selected d so
as to maximize cluster number and tightness:

k dð Þ≥k d0ð Þ ∀ d0≠d
S k dð Þ; dð Þ≥S k d0ð Þ; d0ð Þ ∀ d0jk d0ð Þ ¼ k dð Þf g

d = 7 and k = 5 were the selected clustering parameters.
This method is implemented in the pamkd function in
the scRAD package.
Due to the high-dimension of the underlying expres-

sion space, clustering was visualized using a two-
dimensional (2D) tSNE projection applied to the d = 7
distance metric (5000 iterations). The five clusters were
annotated in clockwise order.
After clustering, we applied ordinary least-squared re-

gression to model each gene i’s expression in cell j as a
function of patient, exposure, and cell type:

gij � αi þ βpi � Patientj þ βei � Exposurej þ βci
� Clusterj

Patient contrasts were coded p1_vs_p3 and p1_vs_p2,
exposure contrasts coded hiv_vs_media, and cluster con-
trasts codes c2/3/4/5_vs_c1. Two-sided t-tests identified
131 and 14 genes that were significantly associated with
patient and exposure, respectively (Bonferroni-adjusted p
value < 0.01), while 1170 genes were significantly associ-
ated with cluster contrasts. These numbers suggest that
cluster identity is far more determinant of global gene ex-
pression than patient or exposure. Cluster proportions are
themselves associated with patient and exposure condi-
tion: for c1/2/3/4, we modeled the relative abundance of
cluster k as a logistic model of Patient and Exposure:

P ckð Þ � αk þ βp � Patient þ βe � Exposure
While all four clusters exhibited significant association

by patient (p < 0.05), all but c2 showed significant

evidence (p < 0.05) of exposure dependence: the c1 pro-
portion was enriched by HIV exposure, while both c3
and c4 were depleted by the exposure.
In patients p2 and p3, for which viability sorts were

applied to some batches, we observed similar cluster
compositions across both exposure conditions at 48 h
(Additional file 1: Figure S2I), suggesting that pre-
selection of viable cells does not affect the distribution
of the clusters identified and analyzed in this study.
Instead, the effect of viability sorting appears to be the
depletion of a large, low-quality cluster exhibiting low
B2M expression uncharacteristic of mDCs (Additional
file 1: Figure S2J, K).
Twenty-four-hour samples were assigned partial clus-

ter identities by projecting them into the first seven PCs
of the 48-h data. Following projection, the 30 nearest
48-h neighbors (Euclidean distance) were identified and
used to assign partial memberships proportional to the
memberships of the neighbors (Additional file 1: Figure
S3B, C).

Reproducible module gene analysis
scRNA-seq is a powerful technique that can identify func-
tionally important subgroups of cells and their complex
underlying biology. As scRNA-seq has become a more
mainstream technology, new questions about how to model
single-cell variation have continued to arise. To date, applied
computational modeling approaches have mostly described
single-cell heterogeneity as a combination of gene-intrinsic
effects (i.e. fundamental molecular noise) [51] and gene-
extrinsic ones, with the latter capturing both cell-intrinsic
features (e.g. differences in intracellular protein levels, epi-
genetic state, mutation status, extracellular environment)
and library-intrinsic technical artifacts (e.g. drop-out effects)
[52, 53]. Yet, in single-cell studies that utilize samples from
across multiple donors (e.g. patients or mice), these gene-
extrinsic sources can be further subdivided into those that
are unique to specific donors and those that are shared. The
category of donor-dependent variation ranges from donor-
specific cell subsets and large differences in cell-type com-
position to more subtle expression differences in constituent
cell types. If the goal of a study is to generate hypotheses re-
lating to a common phenotype, strategies for prioritizing
shared features can benefit from quantitative characteriza-
tions of reproducibility across multiple donors.
Our clustering analysis captured the full distribution of

cell states seen across the three ECs, but we also attempted
to identify clusters of genes—gene modules—that were con-
sistently co-regulated across patients at 48 h. Unlike DE ana-
lysis, this unsupervised approach aims to identify transcripts
serving as reliable proxies of reproducible gene expression
patterns.
We first pooled the normalized log-TPM data for each

patient and separately computed the gene–gene Pearson
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correlation matrix. Each correlation value was Fisher-
transformed and scaled to a z-score with 0 median and a
median absolute deviation (MAD) equal to 0.67 (computed
over the upper triangle). Only gene pairs with abs(z) > 2.4
in all three patient matrices were considered “reproducible
gene pairs.” This step is implemented in the scRAD::get.re-
pro.thresh.adjacency function in R.
For each gene, we tallied the number of reproducible

gene pairs to which it belongs. We considered whether
we could find genes with significantly more pairs than
would be expected by chance; these genes could serve as
reliable proxies of reproducible correlations. The distri-
bution of pair counts was modeled as a zero-inflated
Poisson process, including a randomly connected Pois-
son component and an unconnected zero-component.
Under this null model, we computed upper-tail p values
using the scRAD::pzipdegree function, identifying 263
genes with p values < 0.01 after Bonferroni adjustment.
As these genes are connected to a large number of re-
producible gene pairs, we called these proxy genes “re-
producible module genes.”
Complete clustering of the median gene-gene correl-

ation across the three patients (using correlation dis-
tance) demonstrates how these genes cluster into three
specific modules (Additional file 1: Figure S6A, B).

Single-cell signature analysis
We searched Gene Expression Omnibus (GEO; https://
www.ncbi.nlm.nih.gov/geo/) for all study entries matching
the query: “((“homo sapiens”[Organism] NOT “mus muscu-
lus”[Organism]) AND (“expression profiling by array”[Data-
Set Type] OR “expression profiling by high throughput
sequencing”[DataSet Type])) AND (“dendritic cell”[Sample
Source] or “dendritic cells”[Sample Source])”, utilizing the
results to identify relevant expression signatures from the
MSigDB C7 collection. We then applied FastProject10 to
identify representative expression signatures in our normal-
ized TPM data. Signature inputs include the selected
MSigDB signatures, a curated signature of 28 IFN-response
genes [20, 23], three unsigned signatures of our reproducible
modules, and a pre-computed cluster signature. Results
show that PCs 1 and 3 represent both biological signatures
and reproducible module signatures more faithfully than al-
ternative 2D projections (including the tSNE plot from
Fig. 1B; Additional file 3: Table S2). In this reproducible
“consensus” space, c3, c4, and c5 lie close together, while c1
and c2 are still well distinguished (Additional file 1: Figure
S3A).
We selected a few of the top signatures from our Fas-

tProject analysis, considering the cumulative distribution
of signatures across each of the five clusters (Fig. 2a, b,
Additional file 1: Figure S5A). Two-sided KS tests were
performed between the signature distributions of c1 (n
= 20), c2 (n = 26), and c3 (n = 35) in order to monitor

the extent to which these signatures discriminate
the populations.

DE analysis
Based on our signature analysis above, we considered
three DE comparisons: (1) c1 vs c3, c4, and c5 (or “c1 vs
c3-5”); (2) c2 vs c3, c4, and c5 (or “c2 vs c3–5”); and (3)
c1 vs c2. Any DE analysis downstream of de novo clus-
tering analysis demands careful consideration. Trad-
itional DE analysis aims at identifying transcripts that
vary markedly by sample class; a common goal is to rank
the relative importance of transcripts in characterizing
underlying expression states. Within the single-cell con-
text, cell class is frequently defined based on low-
dimensional representations of expression data. Therefore,
the assumption that most genes are not differentially
expressed between classes may not hold. Null models
based on this assumption are ill-suited to the data, and
will naturally yield uncalibrated probabilistic-based scores,
e.g. deflated p value distributions.
In addition to biological factors, library intrinsic tech-

nical factors and batch-level features can drive broad ex-
pression covariance in scRNA-seq data. While some of
these effects are random, others can confound DE ana-
lyses by systematically distorting transcriptome-wide dif-
ferences between biologically distinct cell states. Without
sufficient modeling efforts, batch specific biases can skew
cluster classifications and reorder the ranks of DE genes.
A natural way to calibrate DE scores and monitor

batch-specific effects is to consider measures of reprodu-
cibility over stratified, replicate experiments: in our case,
over multiple patients. Unfortunately, there is no natural
analog for biological replicates in the single-cell context;
we do not yet wield the necessary experimental controls
to reproduce a specific sample of transcriptional states.
At the very least, we can map clusters from replicate ex-
periments so that cluster contrasts are made compar-
able. For example, in our analysis we clustered cells
from all patients simultaneously - offering a natural
mapping between clusters called in the three patients:
e.g. c1 cells in patient 1 belongs to the same biological
“pseudo-replicate” as c1 cells in patient 2.
Our meta-analytical DE approach, implemented using

the scRAD::kruskalIDRm tool, relies on the reproducibil-
ity metric known as IDR [24]. This metric evaluates a
matched set of “signals” measured in two or more repli-
cate experiments. In this analysis, we pooled cells from
patients 1 and 2 to define the first study stratum, and
considered all cells from patient 3 to be the second repli-
cate stratum. We pooled cells from patients 1 and 2 to-
gether because the fewest high-quality cells were sequenced
in these patients; pooling them together increased average
stratum power. Though we performed a two-replicate ana-
lysis, our scRAD package modifies the Expectation–
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Maximization (EM) algorithm from the idr CRAN package
to handle three or more replicates (see scRAD vignette).
Equations relevant to this extension can be found in the
Additional Online Materials (Additional file 7: AOM).
We performed simple DE analysis in each replicate

study using Kruskal–Wallis tests; for each comparison,
this yielded two lists of log-fold-changes and two lists of
p values (see Additional file 4: Table S3). The two-
component IDR mixture model was used to fit the joint
distribution of p values obtained from these tests. For
each gene, we can estimate a probability that the gene is
a member of an “irreproducible component” for which p
values are high and uncorrelated vs a “reproducible
component” for which p values are low and correlated.
Sorting genes by increasing probability of irreproducibil-
ity, one can compute the cumulative probability of
membership for all genes of same or lower rank, defin-
ing an IDR. Genes called with an IDR < 0.01 were re-
ported as “differentially expressed.”
We compared this approach to DE effects estimated

according to a more traditional model of log-expression
in gene i in cell j:

gij � αi þ βpi � Patientj þ βci � Cluster contrastj

Additional file 1: Figure S6D shows a comparison of
IDR values to Bonferroni-adjusted p values obtained
from t-tests on βci within the context of a c1 vs c3–5
contrast. Our criterion is generally more conservative
than the regression approach above, with many signifi-
cant genes having high (poor) IDR values. The genes
that meet the significance criterion but not the reprodu-
cibility one may be good candidates for patient-specific
DE. In Additional file 1: Figure S6E, we show the first
two PCs computed over the two significant gene subsets:
high IDR and low IDR. These plots appear to show tigh-
ter clustering among patient-specific structures for the
high IDR set. To test this effect, we binned genes from
both sets according to their rounded log-expression
across the dataset (excluding c2). By sampling bins
evenly for both sets—1000 times—we saw that the
average silhouette width for patient and cluster con-
trast (c1 vs c3–5) shifted. Silhouette widths were
computed on Euclidean metrics over the top one-
third of PC space. Patient clustering was tighter for
high IDR genes, while cluster contrasts were tighter
for lower IDR genes. These results exemplify how our
meta-analysis approach targets covariance structures
shared across patients.
If we assume the difference between c1 and c2 is

small compared to their common differences with
clusters c3, c4, and c5 (c3–5), we may claim that the
more a gene is reproducibly differentially expressed
for one comparison, the more likely that gene should

be reproducibly differentially expressed in the other.
By this assumption, IDR analysis can be applied to
two lists of IDR values from separate experiments in
order to identify genes for which IDRs obtained from
both comparisons are themselves correlated vs uncor-
related. Genes passing this threshold and showing
common sign of DE were called “Shared” genes in
Fig. 2c. Some of the remaining differentially expressed
genes from these two comparisons were partitioned
into three additional groups: (1) “c1-specific,” for which
a gene is called differentially expressed in both c1 vs c3–5
AND c1 vs c2 comparisons, but not c2 vs c3–5; (2) “c2-
specific,” which is analogously defined; and (3) “discord-
ant,” for which genes are called differentially expressed in
all three comparisons.
Given the large number of c1 cells at 48 h, we addition-

ally considered the expression modulating effects of viral
exposure vs media exposure to cells from a single cluster.
Cells from p1 and p2 were pooled for a similar IDR
analysis, though given the small number of cells tested
(Additional file 4: Table S3) we imposed an additional
reporting criterion of twofold difference to call genes as
“differentially expressed” (Additional file 1: Figure S4C).
Candidate surface markers for c1 were identified using

the scRAD::getMarkers tool. This tool reports the intersec-
tion of three gene sets: (1) genes differentially expressed
between c1 and c3–5; (2) reproducible module genes; and
(3) predicted membrane molecules from the Human Pro-
tein Atlas (http://www.proteinatlas.org) (Fig. 3a).

Ingenuity pathway analysis
For each of the main three DE comparisons, we applied IPA
[11] (https://www.qiagenbioinformatics.com) to the list of
log-fold-change (mean of log-fold-changes from two
replicate tests) and IDR, setting a less restrictive cutoff of
IDR < 0.05 (Additional file 6: Table S5). The user dataset
was used as the reference set for p value calculation and all
experimentally verified mammalian associations were
included in the analysis. IPA reported Benjamini–Hochberg
q-values for canonical pathways enrichments and we
performed our own Bonferroni p value adjustment for all
reported upstream analysis p values.
Q–Q plots comparing putative upstream regulator

log-p-values from c1 vs c3–5 and c2 vs c3–5 analyses
displayed (not-shown) evidence of biased p value infla-
tion between the two lists that could be adjusted via
linear regression, producing “Adjusted” c1 vs c3–5 over-
lap p values for visualizing the results of these tests
(Fig. 2e). In this visualization, two special sets of regula-
tors were identified: (1) “common” regulators that are
shared by the c1 vs c3–5 and c2 vs c3–5 results; and (2)
“polarized” regulators that are unique to the c1 vs c3–5
results, but also shared with the c1 vs c2 results.
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False-negative weights
Due to small starting amounts of RNA, scRNA-seq data are
burdened by “drop-out effects,” in which an mRNA tran-
script expressed in a cell is not detected during sequencing
[54]. Dropped transcripts could have been degraded before
library preparation or skipped by reverse-transcription. The
probability of drop-out is largely a function of transcript
abundance at cell lysis and there have been multiple empir-
ical observations that drop-out rates and log-transcript
abundance typically follow a logistic relationship [52, 54]
Here, we analyze transcript detection rates using the follow-
ing model:

P Eij ¼ 1
� � ¼ αj

P Dij ¼ 1jEij ¼ 1
� � ¼ 1

1 þ exp −Ziμj þ Si
� �

where D is an observed n × J binary matrix encoding
whether or not transcript j is detected in cell i: 1 =Detec-
tion, 0 =No detection. E is a hidden binary matrix of the
same dimension encoding whether or not the transcript is
expressed in the cell: 1 = Expression, 0 =No expression. αj
is the estimated expression rate (i.e. % cells that express the
gene j), μj is the median transcript abundance (here, nor-
malized TPM) across all cells expressing the gene j (TPM>
0), and Z and S are n-vectors of cell-specific drop-out coef-
ficients. We first fit a GLM to data from 99 genes with the
lowest Fano-factor, adjusting for mean expression, assuming
that these genes are expressed in all cells; this fit yielded
both Z and S in the second equation. We then estimated E
and αj using the EM algorithm implemented in the SCONE
package. Using the resulting posterior E probabilities (the
expected E matrix), we computed a “weight matrix,” Wij,
capturing the posterior probability that gene j did not drop
out in sample i.

Quantifying viral abundance
For each cell, viral abundance was quantified as a mean of
RSEM TPM estimates for Gag and Pol gene segments (Gen-
Bank accession AF324493), given even coverage observed
across those segments (Additional file 1: Figure S4A, B).
Interestingly, we only observed HIV coverage in samples
from p1. We applied Fisher’s exact tests to compare HIV de-
tection across virally exposed subpopulations (excluding p1-
specific cluster 5), but found no significant trends. Similarly,
Kruskal–Wallis tests comparing gene expression in HIV-1-
positive and -negative groups (all exposed) found no signifi-
cant intra-cluster variation.

Validation of c1-enriched CD64Hi,PD-L1Hi population
As with the scRNA-seq data, we applied RSEM alignment
and sample-filtering procedures to population RNA-seq

samples sorted by c1 candidate markers, leaving 13 samples
covering eight possible conditions (24 h/48 h, HIV/media,
Hi/Lo). Expression values for 6557 genes were normalized
using standard DESeq scaling normalization [55], followed
by gene-level regression on the first PC of QC metrics,
retaining the residual for downstream analysis. Duplicate
gene symbols were averaged as above. A total of 576 of the
differentially expressed gene symbols from the c1 vs c3–5
comparison, passing TPM gene filter, were detected in
population experiments. A weighted mean was computed
for each of these shared genes, for each single-cell subpopu-
lation c1–5, and Pearson correlations were computed be-
tween sorted populations and population means after log1p-
transforming both datasets. Radar plot cycles representing
these correlations are presented on a min-max scale per
bulk condition (min: 0.32–0.54, max: 0.81–0.89). Correlation
values for replicate sample conditions (n = 2) were averaged
before plotting.

Prediction of upstream regulators of c1
In order to generate hypotheses related to the sensing mech-
anisms behind c1 response, we performed IPA (as described
above) and identified several innate immune pathways—in-
cluded specific TLR signaling pathways—selectively induced
in this population. Due to the limited availability of genome-
wide human stimulation data, we opted to compare our
single-cell expression profiles to publicly available expression
profiles of mouse bone-marrow-derived dendritic cell
(BMDC) populations exposed to five TLR agonists (lipo-
polysaccharide (LPS), Pam3CSK4 (PAM), Polyinosinic:poly-
cytidylic acid (Poly I:C), gardiquimod (Gard), and CpG
DNA (CpG)) and one control (unstimulated) condition [33].
Replicate microarray samples from each condition were av-
eraged, followed by averaging over probes of a gene symbol.
Homologs were mapped using the biomaRt Bioconductor
package and only uniquely mapping genes were considered
for further analysis. Normalized single-cell TPM was log1p-
transformed and gene abundances were centered by
weighted means (using the W false-negative weight matrix
defined above). Mouse data was log-transformed and genes
were centered by their mean value. We computed a
weighted correlation estimate (using the W matrix) for each
pair of single-cell and mouse population taken at the 24-h
time-point of the mouse study. For each bulk sample, we ap-
plied two-tailed Wilcoxon rank-sum tests to examine differ-
ences in correlation between cells from c1 and c3-5. The
correlations were referred to as the “TLR stimulation score,”
as they measure the extent to which the subpopulation-
specific response is correlated with the TLR-stimulated pro-
file. Using Stouffer’s z-method, we combined p values
collected from the two donor pools used in DE (all imple-
mented in scRAD::kruskalMeta) reporting a meta-analysis
FDR < 0.01 (Fig. 4b) [33]. Weighted correlation of samples i
and i' is defined by the equations:
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Where weights of population data are set to unity.
We next sought to generate analogous results using

RNA-seq data collected from human mDCs rather than
distant mouse BMDCs. We applied RSEM alignment and
sample-filtering procedures to population RNA-seq data
collected from DCs incubated for 48 h with or without
various TLR ligands (see above), leaving eight samples
covering five possible conditions (no TLR, TLR2/3/4/8).
Expression values for 18,482 genes were normalized using
standard DESeq scaling normalization [55]. Duplicate
gene symbols were averaged as above. We applyied the
same meta-analysis pipeline as for the mouse array data,
ranking various inductions in their relative similarity to c1
(Additional file 1: Figure S10A).
Drawing again on available characterizations of the

mouse BMDC system, we chose to correlate single-cell
gene expression profiles with short hairpin RNA (shRNA)
knockdowns of TLR signaling network components) [32]
to highlight potential upstream regulators mediating c1 re-
sponse. Publicly available—and normalized—nCounter
population data were mapped to unique human homologs,
log-scaled and gene-centered as above. Normalized single-
cell TPM estimates were similarly log1p-transformed and
centered by weighted mean. Weighted correlation estimates
were computed as in the TLR analysis above, and for each
shRNA experiment, we applied two-tailed Wilcoxon rank-
sum tests to examine differences in correlation between c1
and c3–5. The opposite of the correlation was referred to
as the upstream regulatory score, as it measures the extent
to which the sub- specific response is anti-correlated with
the shRNA-knockdown profile. Instead of simple meta-
analysis on the donor pools used for the TLR stimulation
scores, we applied the scRAD::kruskalIDRm analysis as in
the DE analysis, defining IDR < 0.05 as our threshold for
calling differential signatures (Fig. 4f).
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Additional file 2: Table S1. Clusters and tSNE coordinates for 48-h cells.
Cluster identifiers and tSNE coordinates from (Fig. 1c) as described in
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Additional file 3: Table S2. Reproducible Modules and FastProject
Analysis. Lists of genes exhibiting significantly high numbers of reproducible
correlations as described in “Methods.” FastProject signature values and
significance scores. (XLSX 408 kb)
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printed above log-fold-change columns. Gene sets from Fig. 2c are included.
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